ZHAO Dianbo, WANG Shaodan, ZHENG Kaixi, et al. Synergistic Inactivation Effects and Mechanisms of Plasma-Activated Water Combined with Phenyllactic Acid against Escherichia coli O157:H7[J]. Science and Technology of Food Industry, 2022, 43(14): 138−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110116.
Citation: ZHAO Dianbo, WANG Shaodan, ZHENG Kaixi, et al. Synergistic Inactivation Effects and Mechanisms of Plasma-Activated Water Combined with Phenyllactic Acid against Escherichia coli O157:H7[J]. Science and Technology of Food Industry, 2022, 43(14): 138−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110116.

Synergistic Inactivation Effects and Mechanisms of Plasma-Activated Water Combined with Phenyllactic Acid against Escherichia coli O157:H7

More Information
  • Received Date: November 11, 2021
  • Available Online: May 08, 2022
  • The present study aimed to elucidate the antibacterial effect and underlying mechanisms of plasma-activated water (PAW) combined with phenyllactic acid (PLA) against Escherichia coli O157:H7. The inactivation effects of PAW and PLA on E. coli O157:H7 and their effect on cell morphology, cell membrane integrity and intracellular reactive oxygen species (ROS) level were investigated by plate counting, scanning electron microscopy and fluorescence staining. The results showed that the population of E. coli O157:H7 did not change significantly after PLA treatment at 0.125~1.0 mg/mL for 8 min (P>0.05). E. coli O157:H7 decreased by 5.65 lg CFU/mL after PAW treatment combined with 1.0 mg/mL of PLA for 8 min, which was significantly higher than the 1.06 lg CFU/mL of PAW alone (P<0.05). As shown by the scanning electron microscope images, obvious changes in the morphology of E. coli O157: H7 cells were observed after PAW treatment combined with PLA. After the co-treatment of PAW and PLA (1.0 mg/mL) for 8 min, the extracellular protein content, cell membrane potential and intracellular ROS level of E. coli O157:H7 increased by 25.6-, 0.75- and 9.53-fold (P<0.05), respectively, as compared with the control cells. In summary, PAW combined with PLA could effectively inactivate E. coli O157:H7 cells, which might be associated with membrane disruption and oxidative damages. The results could provide a scientific basis for the application of PAW and PLA in food sterilization and preservation.
  • [1]
    康超娣, 相启森, 刘骁, 等. 等离子体活化水在食品工业中应用研究进展[J]. 食品工业科技,2018,39(7):348−352. [KANG C D, XIANG Q S, LIU X, et al. A review of application of plasma-activated water in food industry[J]. Science and Technology of Food Industry,2018,39(7):348−352.

    KANG C D, XIANG Q S, LIU X, et al. A review of application of plasma-activated water in food industry[J]. Science and Technology of Food Industry, 2018, 39(7): 348–352.
    [2]
    LAURITA R, GOZZI G, TAPPI S, et al. Effect of plasma activated water (PAW) on rocket leaves decontamination and nutritional value[J]. Innovative Food Science & Emerging Technologies,2021,73:102805.
    [3]
    ZHAO Y M, OLIVEIRA M, BURGESS C M, et al. Combined effects of ultrasound, plasma–activated water, and peracetic acid on decontamination of mackerel fillets[J]. LWT-Food Science and Technology,2021,150:111957. doi: 10.1016/j.lwt.2021.111957
    [4]
    ROYINTARAT T, CHOI E H, BOONYAWAN D, et al. Chemical–free and synergistic interaction of ultrasound combined with plasma-activated water (PAW) to enhance microbial inactivation in chicken meat and skin[J]. Scientific Reports,2020,10(1):1559. doi: 10.1038/s41598-020-58199-w
    [5]
    CHOI E J, PARK H W, KIM S B, et al. Sequential application of plasma–activated water and mild heating improves microbiological quality of ready–to–use shredded salted kimchi cabbage (Brassica pekinensis L.)[J]. Food Control,2019,98:501−509. doi: 10.1016/j.foodcont.2018.12.007
    [6]
    LIU X, LI Y F, WANG S D, et al. Synergistic antimicrobial activity of plasma-activated water and propylparaben: Mechanism and applications for fresh produce sanitation[J]. LWT-Food Science and Technology,2021,146:111447. doi: 10.1016/j.lwt.2021.111447
    [7]
    LIU X, LI Y F, ZHANG R, et al. Inactivation effects and mechanisms of plasma-activated water combined with sodium laureth sulfate (SLES) against Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology,2021,105(7):2855−2865. doi: 10.1007/s00253-021-11227-9
    [8]
    邓廷山, 武国干, 孙宇, 等. 苯乳酸生物合成的研究进展[J]. 中国生物工程杂志,2020,40(9):62−68. [DENG T S, WU G G, SUN Y, et al. Advances in biosynthesis of phenyllactic acid[J]. China Biotechnology,2020,40(9):62−68.

    DENG T S, WU G G, SUN Y, et al. Advances in biosynthesis of phenyllactic acid[J]. China Biotechnology, 2020, 40(9): 62–68.
    [9]
    YOO J A, MIN-HO Y, LEE J L, et al. Antifungal effect of phenyllactic acid produced by Lactobacillus casei isolated from button mushroom[J]. Journal of Mushrooms,2016,14(4):162−167. doi: 10.14480/JM.2016.14.4.162
    [10]
    MU W M, YU S H, ZHU L J, et al. Recent research on 3-phenyllactic acid, a broad-spectrum antimicrobial compound[J]. Applied Microbiology and Biotechnology,2012,95(5):1155−1163. doi: 10.1007/s00253-012-4269-8
    [11]
    RAJANIKAR R V, NATARAJ B H, NAITHANI H, et al. Phenyllactic acid: A green compound for food biopreservation[J]. Food Control,2021:108184.
    [12]
    ZHANG R, MA Y F, WU D, et al. Synergistic inactivation mechanism of combined plasma-activated water and mild heat against Saccharomyces cerevisiae[J]. Journal of Food Protection,2020,83(8):1307−1314. doi: 10.4315/JFP-20-065
    [13]
    刘骁, 李云菲, 王雯雯, 等. 紫外发光二极管对P. deceptionensis CM2杀菌作用及机制[J]. 食品工业,2021,42(8):150−154. [LIU X, LI Y F, WANG W W, et al. Effect of ultraviolet-C light-emitting diodes on P. deceptionensis CM2: Inactivation efficiency and mechanism[J]. Food Industry,2021,42(8):150−154.

    LIU X, LI Y F, WANG W W, et al. Effect of ultraviolet-C light-emitting diodes on P. deceptionensis CM2: Inactivation efficiency and mechanism[J]. Food Industry, 2021, 42(8): 150–154.
    [14]
    SANNASIDDAPPA T H, LUND P A, CLARKE S R. In vitro antibacterial activity of unconjugated and conjugated bile salts on Staphylococcus aureus[J]. Frontiers in Microbiology,2017,8:1581. doi: 10.3389/fmicb.2017.01581
    [15]
    XING K, XING Y, LIU Y F, et al. Fungicidal effect of chitosan via inducing membrane disturbance against Ceratocystis fimbriata[J]. Carbohydrate Polymers,2018,192:95−103. doi: 10.1016/j.carbpol.2018.03.053
    [16]
    相启森, 张嵘, 杜桂红, 等. 等离子体活化水对沙门氏菌的灭活作用及机制研究[J]. 食品工业科技,2021,42(8):138−143. [XIANG Q S, ZHANG R, DU G H, et al. Inactivation effects and mechanisms of plasma-activated water against S. typhimurium[J]. Science and Technology of Food Industry,2021,42(8):138−143.

    XIANG Q S, ZHANG R, DU G H, et al. Inactivation effects and mechanisms of plasma-activated water against S. typhimurium[J]. Science and Technology of Food Industry, 2021, 42(8): 138−143.
    [17]
    NING Y W, YAN A H, YANG K, et al. Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms[J]. Food Chemistry,2017,228:533−540. doi: 10.1016/j.foodchem.2017.01.112
    [18]
    LIU F, TANG C, WANG D B, et al. The synergistic effects of phenyllactic acid and slightly acid electrolyzed water to effectively inactivate Klebsiella oxytoca planktonic and biofilm cells[J]. Food Control,2021,125:107804. doi: 10.1016/j.foodcont.2020.107804
    [19]
    宁亚维, 付浴男, 何建卓, 等. 苯乳酸和醋酸联用对大肠杆菌的抑菌机理[J]. 食品科学,2021,42(3):77−84. [NING Y W, FU Y N, HE J Z, et al. Antibacterial mechanism of phenyllactic acid combined with acetic acid on Escherichia coli[J]. Food Science,2021,42(3):77−84. doi: 10.7506/spkx1002-6630-20200128-285

    NING Y W, FU Y N, HE J Z, et al. Antibacterial mechanism of phenyllactic acid combined with acetic acid on Escherichia coli[J]. Food Science, 2021, 42(3): 77–84. doi: 10.7506/spkx1002-6630-20200128-285
    [20]
    KONINGS W N, ALBERS S V, KONING S, et al. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments[J]. Antonie Van Leeuwenhoek,2002,81:61−72. doi: 10.1023/A:1020573408652
    [21]
    康世墨. 乳糖酸对耐甲氧西林金黄色葡萄球菌抑菌机理的研究[D]. 沈阳: 沈阳农业大学, 2020.

    KANG S M. Study on the antibacterial mechanism of lactobionic acid against methicillin-resistant Staphylococcus aureus[D]. Shenyang: Shenyang Agricultural University, 2020.
    [22]
    SORRENTINO E, TREMONTE P, SUCCI M, et al. Detection of antilisterial activity of 3-phenyllactic acid using Listeria innocua as a model[J]. Frontiers in Microbiology,2018,9:1373. doi: 10.3389/fmicb.2018.01373
    [23]
    BENARROCH J M, ASALLY M. The microbiologist's guide to membrane potential dynamics[J]. Trends in Microbiology,2020,28(4):304−314. doi: 10.1016/j.tim.2019.12.008
    [24]
    WANG X Y, TIAN L, FU J P, et al. Evaluation of the membrane damage mechanism of thymol against Bacillus cereus and its application in the preservation of skim milk[J]. Food Control,2021,131:108435. doi: 10.1016/j.foodcont.2021.108435
    [25]
    WANG F T, WU H H, JIN P P, et al. Antimicrobial activity of phenyllactic acid against Enterococcus faecalis and its effect on cell membrane[J]. Foodborne Pathogens and Disease,2018,15(10):645−652. doi: 10.1089/fpd.2018.2470
    [26]
    ZHOU R W, ZHOU R S, PRASAD K, et al. Cold atmospheric plasma activated water as a prospective disinfectant: The crucial role of peroxynitrite[J]. Green Chemistry,2018,20(23):5276−5284. doi: 10.1039/C8GC02800A
    [27]
    HOU C Y, LAI Y C, HSIAO C P, et al. Antibacterial activity and the physicochemical characteristics of plasma activated water on tomato surfaces[J]. LWT-Food Science and Technology,2021,149:111879. doi: 10.1016/j.lwt.2021.111879
    [28]
    HERIANTO S, HOU C Y, LIN C M, et al. Nonthermal plasma-activated water: A comprehensive review of this new tool for enhanced food safety and quality[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(1):583−626. doi: 10.1111/1541-4337.12667
    [29]
    ZHAO Y M, OJHA S, BURGESS C M, et al. Inactivation efficacy and mechanisms of plasma activated water on bacteria in planktonic state[J]. Journal of Applied Microbiology,2020,129(5):1248−1260. doi: 10.1111/jam.14677
    [30]
    LIAO X Y, CULLEN P J, MUHAMMAD A I, et al. Cold plasma-based hurdle interventions: New strategies for improving food safety[J]. Food Engineering Reviews,2020,12(3):321−332. doi: 10.1007/s12393-020-09222-3
  • Cited by

    Periodical cited type(13)

    1. 王洪江,赵品贞,姬庆,张建忠,王兴伟,夏书芹,张晓鸣. 影响蚝油气味品质的关键风味化合物的研究. 食品与发酵工业. 2025(07): 309-315 .
    2. 张丽华,王子阳,王文博,范雯,白杨,纵伟. 顶空固相微萃取-气相色谱-质谱联用结合气味活度值法分析不同脱腥方法对鸡爪挥发性风味物质的影响. 肉类研究. 2025(04): 17-23 .
    3. 黄磊,孙纪录,张彩璇,张海恩,郭明珠. 淡水鱼腥味物质检测及脱腥技术研究进展. 食品研究与开发. 2024(04): 209-216 .
    4. 付靖雯,陈昌威,沈祥皓,杨柳莺,王则程,杨金玉,盘赛昆. 响应面法优化紫贻贝脱腥及预处理加工工艺. 中国调味品. 2024(06): 15-21 .
    5. 王志龙,王禹,段静瑶,苏岩峰,喻佩. 海参制品腥味化合物形成与脱腥技术研究进展. 中国调味品. 2024(06): 206-212 .
    6. 冯瑞,梁结桦,田柬昕,赵影,张宇,黄达荣,杜冰,钟碧銮. 基于电子鼻和顶空固相微萃取-气相色谱-质谱技术分析不同品种鱼胶的风味差异. 食品科技. 2024(05): 289-298 .
    7. 洪林欣,童星,孙乐常,吴昌正,尹开平,刘康,林端权,张凌晶. 酶解前后牡蛎肉风味变化研究. 食品与发酵工业. 2024(20): 120-128 .
    8. 李放,邓林艳,张婉婷,徐文思,杨祺福,王伯华,杨品红. 淡水虾腥味脱除技术研究进展. 农产品加工. 2023(03): 89-92 .
    9. 石林凡,李周茹,任中阳,刘光明,翁武银. 贝类腥味物质及形成机理研究进展. 中国食品学报. 2023(03): 406-415 .
    10. 陈雅纯,王利文,马爱进,桑亚新,孙纪录. 市售低值贝类加工食品中原肌球蛋白致敏性评估及其消减技术. 食品科学. 2023(07): 169-175 .
    11. 夏强,黄思强,梁倚绮,徐乐,周昌瑜,党亚丽,曹锦轩,涂茂林,孙杨赢,潘道东. 畜禽类肝脏腥味物质与脱腥技术研究进展. 肉类研究. 2023(07): 28-34 .
    12. 刘泽祺,李明霞,杨琳,郑华,林捷,吴绍宗,郭宗林,雷红涛. 畜禽副产物腥味形成机制及脱腥方法研究进展. 食品安全质量检测学报. 2023(16): 86-93 .
    13. 张美琪,代文洁,吴禹琪,郑佳,李松,秦茂林,张淑华,吴同. 酒糟基磁性活性碳制备及其亚甲基蓝吸附机能分析. 宜宾学院学报. 2022(12): 105-109 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (300) PDF downloads (16) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return