Citation: | HUANG Yang, GAO Tianyi, ZHU Hongxing, et al. A Fluorescent Probe Based on Biological Matrix Carbon Dots for the Detection of Nitrite in Cured Meat Products[J]. Science and Technology of Food Industry, 2022, 43(14): 354−361. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110113. |
[1] |
HUANG L, ZENG X Q, SUN Z, et al. Production of a safe cured meat with low residual nitrite using nitrite substitutes[J]. Meat Science,2020,162:108027. doi: 10.1016/j.meatsci.2019.108027
|
[2] |
FLORES M, TOLDRA F. Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products-invited review[J]. Meat Science,2020,171:108272.
|
[3] |
杨建飞, 马倩, 左勇, 等. 亚硝酸盐快速检测试剂研究及其在酱腌菜中的应用[J]. 食品科学,2021,42(18):321−328. [YANG J F, MA Q, ZUO Y, et al. A spectrophotometric reagent for the rapid detection of nitrite and its application to pickles[J]. Food Science,2021,42(18):321−328. doi: 10.7506/spkx1002-6630-20200814-197
YANG J F, MA Q, ZUO Y, et al. A spectrophotometric reagent for the rapid detection of nitrite and its application to pickles[J]. Food Science, 2021, 42(18): 321-328. doi: 10.7506/spkx1002-6630-20200814-197
|
[4] |
孙延勤, 张芳芳, 沈娟, 等. 抑制型离子色谱法电导检测畜禽肉中硝酸盐和亚硝酸盐[J]. 食品与发酵工业,2020,46(11):264−268. [SUN Y Q, ZHANG F F, SHEN J, et al. Conductance detection of nitrate and nitrite in livestock and poultry muscle by inhibitory ion chromatography[J]. Food and Fermentation Industries,2020,46(11):264−268.
SUN Y Q, ZHANG F F, SHEN J, et al. Conductance detection of nitrate and nitrite in livestock and poultry muscle by inhibitory ion chromatography[J]. Food and Fermentation Industries, 2020, 46(11): 264-268.
|
[5] |
REFAI H M, SEBAEI A S. Daily intake of nitrate and nitrite via meat and poultry in Egypt[J]. Food & Additives & Contaminants:Part B,2020,13(4):292−297.
|
[6] |
李秀明, 马俪珍. HPCE法同时检测果蔬及肉制品中硝酸盐和亚硝酸盐含量[J]. 食品科学,2018,39(12):301−307. [LI X M, MA L Z. Simultaneous determination of nitrate and nitrite in vegetables and meat products by high performance capillary electrophoresis[J]. Food Science,2018,39(12):301−307. doi: 10.7506/spkx1002-6630-201812046
LI X M, MA L Z. Simultaneous determination of nitrate and nitrite in vegetables and meat products by high performance capillary electrophoresis[J]. Food Science, 2018, 39(12): 301-307. doi: 10.7506/spkx1002-6630-201812046
|
[7] |
王盼雪, 孙妍, 单锦瑞, 等. 一步分光光度法检测肉制品中亚硝酸盐的含量[J]. 陕西科技大学学报,2021,39(1):58−62. [WANG P X, SUN Y, SHAN J R, et al. Detection of nitrite in meat products using one-step spectrophotometry[J]. Journal of Shaanxi University of Science,2021,39(1):58−62.
WANG P X, SUN Y, SHAN J R, et al. Detection of nitrite in meat products using one-step spectrophotometry[J]. Journal of Shaanxi University of Science, 2021, 39(1): 58-62.
|
[8] |
CHEN J M, FAN T J, ZENG Q Q, et al. Advances in nanomaterials for photodynamic therapy applications: Status and challenges[J]. Biomaterials,2020,237:119827. doi: 10.1016/j.biomaterials.2020.119827
|
[9] |
JEON J. Review of therapeutic applications of radiolabeled functional nanomaterials[J]. International Journal of Molecular Sciences,2019,20(9):2323. doi: 10.3390/ijms20092323
|
[10] |
JING W X, YAO K, XU Z K. Nanomaterials with a photothermal effect for antibacterial activities: An overview[J]. Nanoscale,2019,11(18):8680−8691. doi: 10.1039/C9NR01833F
|
[11] |
PAN M F, XIE X Q, LIU K X, et al. Fluorescent carbon quantum dots-synthesis, functionalization and sensing application in food analysis[J]. Nanomaterials,2020,10(5):930. doi: 10.3390/nano10050930
|
[12] |
SHARMA N, DAS G S, YUN K. Green synthesis of multipurpose carbon quantum dots from red cabbage and estimation of their antioxidant potential and bio-labeling activity[J]. Applied Microbiology and Biotechnology,2020,104(16):7187−7200. doi: 10.1007/s00253-020-10726-5
|
[13] |
FENG H, QIAN Z S. Functional carbon quantum dots: A versatile platform for chemosensing and biosensing[J]. The Chemical Record,2018,18(5):491−505. doi: 10.1002/tcr.201700055
|
[14] |
DEVI P, SAINI S, KIM K H. The advanced role of carbon quantum dots in nanomedical applications[J]. Biosensors & Bioelectronics,2019,141:111158.
|
[15] |
WANG Z H, ZHANG L, HAO Y M, et al. Ratiometric fluorescent sensors for sequential on-off-on determination of riboflavin, Ag+ and L-cysteine based on NPCl-doped carbon quantum dots[J]. Analytica Chimica Acta,2021,1144:1−13. doi: 10.1016/j.aca.2020.11.054
|
[16] |
NAN Z Z, HAO C C, ZHANG X G, et al. Carbon quantum dots (CQDs) modified ZnO/CdS nanoparticles based fluorescence sensor for highly selective and sensitive detection of Fe(III)[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,228:117717. doi: 10.1016/j.saa.2019.117717
|
[17] |
LI B L, LI Y S, GAO X F. Fluorescence quenching capillary analysis for determining trace-level nitrite in food based on the citric acid/ethylenediamine nanodots/nitrite reaction[J]. Food Chemistry,2019,274:162−169. doi: 10.1016/j.foodchem.2018.08.112
|
[18] |
WANG L, DONG L, BIAN G R, et al. Using organic nanoparticle fluorescence to determine nitrite in water[J]. Analytical and Bioanalytical Chemistry,2005,382(5):1300−1303. doi: 10.1007/s00216-005-3250-0
|
[19] |
WANG X, YANG P, FENG Q, et al. Green preparation of fluorescent carbon quantum dots from cyanobacteria for biological imaging[J]. Polymers,2019,11(4):616. doi: 10.3390/polym11040616
|
[20] |
RAHIMI M, MAHANI M, HASSANI Z. Carbon quantum dots fluorescence quenching for potassium optode construction[J]. Luminescence,2019,34(4):402−406. doi: 10.1002/bio.3634
|
[21] |
中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009.33-2016食品安全国家标准 食品中亚硝酸盐与硝酸盐的测定[S]. 北京: 中国标准出版社, 2016
National Health and Family Planning Commission of the People’s Republic of China, State Food and Drug Administration. GB 5009.33-2016 National food safety standard determination of nitrite and nitrate in food[S]. Beijing: China Standard Press, 2016.
|
[22] |
JOTHI V K, GANESAN K, NATARAJAN A, et al. Green synthesis of self-sassivated sluorescent sarbon sots serived from rice bran for degradation of methylene blue and fluorescent ink applications[J]. 2021, 31(2): 427-436.
|
[23] |
王庆红, 谭明乾, 齐子和, 等. 扇贝来源碳量子点性质及与镉联合毒性[J]. 食品科学,2021,42(5):169−176. [WANG Q H, TAN M Q, QI Z H, et al. Charaterization of carbon quantum dots from boiled scallop (Patinopecten yesspensis) and its combined toxicity with cadmium[J]. Food Science,2021,42(5):169−176. doi: 10.7506/spkx1002-6630-20200226-290
WANG Q H, TAN M Q, QI Z H, et al. Charaterization of carbon quantum dots from boiled scallop (Patinopecten yesspensis) and its combined toxicity with cadmium[J]. Food Science, 2021, 42(5): 169-176. doi: 10.7506/spkx1002-6630-20200226-290
|
[24] |
黄珊, 姚建东, 宁淦, 等. 石墨烯量子点荧光探针对碱性磷酸酶活性的高效检测[J]. 高等学校化学学报,2021,42(8):169−176. [HUANG S, YAO J D, NING G, et al. Efficient determination of alkaline phosphatase activity based on graphene quantum dots fluorescent probes[J]. Chemical Journal of Chinese Universities,2021,42(8):169−176.
HUANG S, YAO J D, NING G, et al. Efficient determination of alkaline phosphatase activity based on graphene quantum dots fluorescent probes[J]. Chemical Journal of Chinese Universities, 2021, 42(8): 169-176.
|
[25] |
EMAM H E, AHMED H B. Antitumor/antiviral carbon quantum dots based on carrageenan and pullulan[J]. International Journal of Biological Macromolecules,2020,170:688−700.
|
[26] |
HU X T, LI Y X, GAN Z Y, et al. Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk[J]. Food Chemistry,2020,339:127775.
|
[27] |
WANG N, WANG Y T, GUO T T, et al. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli[J]. Biosensors & Bioelectronics,2016,85:68−75.
|
[28] |
YANG P, ZHU Z Q, ZHANG T, et al. Orange‐emissive carbon quantum dots: Toward application in wound pH monitoring based on colorimetric and fluorescent changing[J]. Small,2019,15(44):1902823. doi: 10.1002/smll.201902823
|
[29] |
QIAO Y Q, LUO D, YU M, et al. A precisely assembled carbon source to synthesize fluorescent carbon quantum dots for sensing probes and bioimaging agents[J]. Chemistry,2018,24(9):2257−2263. doi: 10.1002/chem.201705310
|
[30] |
ATCHUDAN R, EDISON T N J I, SHANMUGAM M, et al. Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging[J]. Physica E Low-dimensional Systems and Nanostructures,2021,126:114417. doi: 10.1016/j.physe.2020.114417
|
[31] |
JIAN J, CHEN W. Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media[J]. Biosensors & Bioelectronics,2014,58(10):219−225.
|
[32] |
ATCHUDAN R, MUTHUCHAMY N, EDISON T N J I, et al. An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles[J]. Biosensors and Bioelectronics,2019,126:160−169. doi: 10.1016/j.bios.2018.10.049
|
[33] |
PU Z F, WEN Q L, YANG Y J, et al. Fluorescent carbon quantum dots synthesized using phenylalanine and citric acid for selective detection of Fe3+ ions[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,229:117944. doi: 10.1016/j.saa.2019.117944
|
[34] |
LIIU Y S, LI W, WU P, et al. Organosilane-functionalized carbon quantum dots and their applications to "on-off-on" fluorometric determination of chromate and ascorbic acid, and in white light-emitting devices[J]. Microchimica Acta,2019,186(8):516. doi: 10.1007/s00604-019-3603-6
|
[35] |
ZHANG R Z, CHEN W. Nitrogen-doped carbon quantum dots: Facile synthesis and application as a "turn-off" fluorescent probe for detection of Hg2+ ions[J]. Biosensors and Bioelectronics,2014,55:83−90. doi: 10.1016/j.bios.2013.11.074
|
[36] |
CHEN Y Y, ZHAO C X, YUE G Z, et al. A highly selective chromogenic probe for the detection of nitrite in food samples[J]. Food Chemistry,2020,317:126361. doi: 10.1016/j.foodchem.2020.126361
|
[37] |
WANG P X, SUN Y, LI X, et al. One-step chemical reaction triggered surface enhanced Raman scattering signal conversion strategy for highly sensitive detection of nitrite[J]. Vibrational Spectroscopy,2021,113:103221. doi: 10.1016/j.vibspec.2021.103221
|
[38] |
COVIELLO D, PASCALE R, CIRIELLO R, et al. Validation of an analytical method for nitrite and nitrate determination in meat foods for infants by ion chromatography with conductivity detection[J]. Foods,2020,9(9):1238. doi: 10.3390/foods9091238
|
[39] |
ZHANG F Y, ZHU X Y, JIAO Z J, et al. Sensitive naked eye detection and quantification assay for nitrite by a fluorescence probe in various water resources[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2018,200:275−280. doi: 10.1016/j.saa.2018.04.025
|