JI Xiaoying, HUANG Yang, HU Xi, et al. Rheological Properties and Structural Characterization of Konjac Glucomannan/Arabic Gum Composite Hydrosol[J]. Science and Technology of Food Industry, 2022, 43(14): 101−109. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110086.
Citation: JI Xiaoying, HUANG Yang, HU Xi, et al. Rheological Properties and Structural Characterization of Konjac Glucomannan/Arabic Gum Composite Hydrosol[J]. Science and Technology of Food Industry, 2022, 43(14): 101−109. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110086.

Rheological Properties and Structural Characterization of Konjac Glucomannan/Arabic Gum Composite Hydrosol

More Information
  • Received Date: November 09, 2021
  • Available Online: May 16, 2022
  • In order to study the properties of konjac glucomannan (KGM)/gum arabic (GA) composite hydrosol and improve its application performance in food industry, the rheological properties and microstructure of KGM/GA composite hydrosol with different proportions were studied by rheometer, FT-IR, XRD and SEM. The rheological properties and structural characterization of KGM/GA composite hydrosol with different mixing ratio were discussed. The results showed that KGM and GA had a good compatibility, and they could play a synergistic role in a certain mixing ratio. GA could improve the rheology and transparency of KGM, and KGM could improve the viscoelasticity and stability of GA. KGM and GA could promote mutual cross-linking through the increase of hydrogen bonds and the decrease of acetyl groups, strengthen the intermolecular force of the composite hydrosol system and form a uniform and regular structure. When KGM:GA was 5:5(w/w), the KGM/GA composite hydrosol with most excellent comprehensive properties was obtained. Compared with KGM single system, the transparency of the sample increased by 65.82% and the crystallinity was enhanced by 14.57%. And the sample had moderate viscosity, high stability and good viscoelasticity, it was expected to provide some theoretical reference for the development of food adhesives and dietary fiber drinks.
  • [1]
    BOMBALDI R F, BOMBALDI F C, RODRIGUES C, et al. Mechanically-enhanced polysaccharide-based scaffolds for tissue engineering of soft tissues[J]. Materials Science & Engineering C, Materials for Biological Applications,2019,94:364−375.
    [2]
    QI X L, WEI W, SHEN J L, et al. Salecan polysaccharide-based hydrogels and their applications: A review[J]. Journal of Materials Chemistry B,2019,7(16):2577−2587. doi: 10.1039/C8TB03312A
    [3]
    DONG S L, FENG S R, LIU F, et al. Factors influencing the adhesive behavior of carboxymethyl cellulose-based hydrogel for food applications[J]. International Journal of Biological Macromolecules,2021,179:398−406. doi: 10.1016/j.ijbiomac.2021.03.027
    [4]
    FENG S R, LIU F, GUO Y S, et al. Exploring the role of chitosan in affecting the adhesive, rheological and antimicrobial properties of carboxymethyl cellulose composite hydrogels[J]. International Journal of Biological Macromolecules,2021,190:554−563. doi: 10.1016/j.ijbiomac.2021.08.217
    [5]
    TANG H B, WANG L, LI Y P, et al. Effect of acidolysis and oxidation on structure and properties of konjac glucomannan[J]. International Journal of Biological Macromolecules,2019,130:378−387. doi: 10.1016/j.ijbiomac.2019.02.048
    [6]
    ZHU F. Modifications of konjac glucomannan for diverse applications[J]. Food Chemistry,2018,256:419−426. doi: 10.1016/j.foodchem.2018.02.151
    [7]
    BEHERA S S, RAY R C. Nutritional and potential health benefits of konjac glucomannan, a promising polysaccharide of elephant foot yam, amorphophallus konjac K. Koch: A review[J]. Food Reviews International,2016,33(1):22−43.
    [8]
    YIN J Y, MA L Y, XIE M Y, et al. Molecular properties and gut health benefits of enzyme-hydrolyzed konjac glucomannans[J]. Carbohydrate Polymers,2020,237:116117. doi: 10.1016/j.carbpol.2020.116117
    [9]
    LI X H, JAYACHANDRAN M, XU B J. Antidiabetic effect of konjac glucomannan via insulin signaling pathway regulation in high-fat diet and streptozotocin-induced diabetic rats[J]. Food Research International,2021,149:110664. doi: 10.1016/j.foodres.2021.110664
    [10]
    QIAO L K, LI Y P, CHI Y Z, et al. Rheological properties, gelling behavior and texture characteristics of polysaccharide from Enteromorpha prolifera[J]. Carbohydrate Polymers,2016,136:1307−1314. doi: 10.1016/j.carbpol.2015.10.030
    [11]
    YANG J, KIM J, CHOI Y J, et al. Elastic gels based on flaxseed gum with konjac glucomannan and agar[J]. Food Science and Biotechnology,2021,30(10):1331−1338. doi: 10.1007/s10068-021-00977-x
    [12]
    SUN J S, JIANG H X, WU H B, et al. Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging[J]. Food Hydrocolloids,2020,107:105942. doi: 10.1016/j.foodhyd.2020.105942
    [13]
    陈晓涵, 庞杰. 魔芋葡甘聚糖和壳聚糖-富里酸纳米颗粒组成的pH值响应性水凝胶的制备(英文)[J]. 食品科学,2021,42(12):8−16. [CHEN X H, PANG J. Fabrication of pH-responsive hydrogels composed of chitosan-fulvic acid microparticles and konjac glucomannan[J]. Food Science,2021,42(12):8−16. doi: 10.7506/spkx1002-6630-20200414-185

    CHEN X H, PANG J. Fabrication of pH-responsive hydrogels composed of chitosan-fulvic acid microparticles and konjac glucomannan[J]. Food Science, 2021, 42(12): 8-16. doi: 10.7506/spkx1002-6630-20200414-185
    [14]
    YANG X, LI A Q, LI D, et al. Improved physical properties of konjac glucomannan gels by co-incubating composite konjac glucomannan/xanthan systems under alkaline conditions[J]. Food Hydrocolloids,2020,106:105870. doi: 10.1016/j.foodhyd.2020.105870
    [15]
    MA F Y, BELL A E, DAVIS F J, et al. Effects of high hydrostatic pressure and chemical reduction on the emulsification properties of gum arabic[J]. Food Chemistry,2015,173:569−576. doi: 10.1016/j.foodchem.2014.10.046
    [16]
    INEGBEDION F, OKOJIE V U, EGHAREVBA F. Physicochemical properties of gum arabic[J]. Organic Polymer Material Research,2020,2(2):13−15.
    [17]
    LEYLAK C, OZDEMIR K S, GURAKAN G C, et al. Optimization of spray drying parameters for Lactobacillus acidophilus encapsulation in whey and gum Arabic: Its application in yoghurt[J]. International Dairy Journal,2021,112:104865. doi: 10.1016/j.idairyj.2020.104865
    [18]
    MA C C, JIANG W, CHEN G P, et al. Sonochemical effects on formation and emulsifying properties of zein-gum arabic complexes[J]. Food Hydrocolloids,2020,114(prepublish):106557.
    [19]
    TAHER M A, MENNATALLAH E A, TADROS L K, et al. The effects of new formulations based on gum Arabic on antioxidant capacity of tomato (Solanum lycopersicum L.) fruit during storage[J]. Journal of Food Measurement and Characterization,2020(prepublish):1−14.
    [20]
    YANG Y, ANVARI M, PAN C H, et al. Characterisation of interactions between fish gelatin and gum arabic in aqueous solutions[J]. Food Chemistry,2012: 135, 555-561.
    [21]
    LI Z Y, ZHANG L, MAO C L, et al. Preparation and characterization of konjac glucomannan and gum arabic composite gel[J]. International Journal of Biological Macromolecules,2021,183:2121−2130. doi: 10.1016/j.ijbiomac.2021.05.196
    [22]
    LAU M H, TANG J, PAULSON A T. Effect of polymer ratio and calcium concentration on gelation properties of gellan/gelatin mixed gels[J]. Food Research International,2001,34(10):879−886. doi: 10.1016/S0963-9969(01)00112-0
    [23]
    BRITO-OLIVEIRA T C, BISPO M, MORAES I C F, et al. Stability of curcumin encapsulated in solid lipid microparticles incorporated in cold-set emulsion filled gels of soy protein isolate and xanthan gum[J]. Food Research International (Ottawa, Ont.),2017,102:759−767. doi: 10.1016/j.foodres.2017.09.071
    [24]
    JIANG Y Y, REDDY C K, HUANG K H, et al. Hydrocolloidal properties of flaxseed gum/konjac glucomannan compound gel[J]. International Journal of Biological Macromolecules,2019,133:1156−1163. doi: 10.1016/j.ijbiomac.2019.04.187
    [25]
    NING Y J, CUI B, YUAN C, et al. Effects of konjac glucomannan on the rheological, microstructure and digestibility properties of debranched corn starch[J]. Food Hydrocolloids,2020,100:105342. doi: 10.1016/j.foodhyd.2019.105342
    [26]
    YUAN C, XU D Y, CUI B, et al. Gelation of kappa-carrageenan/konjac glucommanan compound gel: Effect of cyclodextrins[J]. Food Hydrocolloids,2019,87:158−164. doi: 10.1016/j.foodhyd.2018.07.037
    [27]
    王晓珊, 袁毅, 龚静妮, 等. 刺云实胶/魔芋葡甘聚糖复合凝胶流变性能[J]. 精细化工,2018,35(10):1707−1712. [WANG X S, YUAN Y, GONG J N, et al. Rheological properties of tara gum/konjac glucomannan blend hydrogels[J]. Fine Chemicals,2018,35(10):1707−1712.

    WANG X S, YUAN Y, GONG J N, et al. Rheological properties of tara gum/konjac glucomannan blend hydrogels[J]. Fine Chemicals, 2018, 35(10): 1707-1712
    [28]
    EIROBOYI I, IKIENSIKIMAMA S S, ORIJI B A, et al. Synergistic study between gum arabic and carboxymethyl cellulose: Application in polymer flooding[J]. Current Journal of Applied Science and Technology,2019:1−7.
    [29]
    WANG Y C, CHANG Y G, XUE Y, et al. Rheology and microstructure of heat-induced fluid gels from Antarctic krill (Euphausia superba) protein: Effect of pH[J]. Food Hydrocolloids,2016,52:510−519. doi: 10.1016/j.foodhyd.2015.07.032
    [30]
    吴伟都, 姜建, 徐玲玲, 等. 魔芋胶溶液浓度对其流变学特性的影响研究[J]. 食品安全质量检测学报, 2021, 18(12): 7403-7409

    WU W D, JIANG J, XU L L, et al. Effects of concentrations of konjac glucomannan solutions on their rheological properties[J]. Food Safety and Quality Detection Technology, 2021, 18(12): 7403-7409.
    [31]
    ZHOU Y, JIANG R S, PERKINS W S, et al. Morphology evolution and gelation mechanism of alkali induced konjac glucomannan hydrogel[J]. Food Chemistry,2018,269:80−88. doi: 10.1016/j.foodchem.2018.05.116
    [32]
    HUANG Q, JIN W P, YE S X, et al. Comparative studies of konjac flours extracted from Amorphophallus guripingensis and Amorphophallus rivirei: Based on chemical analysis and rheology[J]. Food Hydrocolloids,2016,57:209−216. doi: 10.1016/j.foodhyd.2016.01.017
    [33]
    WANG S S, ZHAN Y F, WU X F, et al. Dissolution and rheological behavior of deacetylated konjac glucomannan in urea aqueous solution[J]. Carbohydrate Polymers,2014,101:499−504. doi: 10.1016/j.carbpol.2013.09.090
    [34]
    RAZMKHAH S, RAZAVI S M A, MOHAMMADIFAR M A. Purification of cress seed (Lepidium sativum) gum: A comprehensive rheological study[J]. Food Hydrocolloids,2016,61:358−368. doi: 10.1016/j.foodhyd.2016.05.035
    [35]
    WU D, YU S M, LIANG H S, et al. The influence of deacetylation degree of konjac glucomannan on rheological and gel properties of konjac glucomannan/κ-carrageenan mixed system[J]. Food Hydrocolloids,2020,101:105523. doi: 10.1016/j.foodhyd.2019.105523
    [36]
    SHAH A, GANI A, AHMAD M, et al. β-Glucan as an encapsulating agent: Effect on probiotic survival in simulated gastrointestinal tract[J]. International Journal of Biological Macromolecules,2016,82:217−222. doi: 10.1016/j.ijbiomac.2015.11.017
    [37]
    FAN S Y, FANG F, LEI A L, et al. Effects of salts on structural, physicochemical and rheological properties of low-methoxyl pectin/sodium caseinate complex[J]. Foods (Basel, Switzerland),2021,10(9):2009.
    [38]
    邹小波, ALAA K M K K, 石吉勇, 等. 应用红外光谱结合化学计量学方法检测阿拉伯胶产地和蛋白质含量(英文)[J]. 食品科学, 2017, 38(20): 229−234

    ZOU X B, ALAA K M K K, SHI J Y, et al. Determination of geographical origin and protein content of acacia gums using infrared spectroscopy and chemometrics[J]. Food Science, 2017, 38(20): 229−234.
    [39]
    KURT A, KAHYAOGLU T. Gelation and structural characteristics of deacetylated salep glucomannan[J]. Food Hydrocolloids,2017,69:255−263. doi: 10.1016/j.foodhyd.2017.02.012
    [40]
    LIU K, LI Q M, ZHA X Q, et al. Effects of calcium or sodium ions on the properties of whey protein isolate-lotus root amylopectin composite gel[J]. Food Hydrocolloids,2019,87:629−636. doi: 10.1016/j.foodhyd.2018.08.050
    [41]
    LIU Y, LI B F, ZHANG K, et al. Novel hard capsule prepared by tilapia (Oreochromis niloticus) scale gelatin and konjac glucomannan: Characterization, and in vitro dissolution[J]. Carbohydrate Polymers,2019,206:254−261. doi: 10.1016/j.carbpol.2018.10.104
  • Cited by

    Periodical cited type(7)

    1. 郭慧慧,蒋元斌,林丛发,徐绍翔,林泽宇,薛立云. 太子参脱毒苗培养、化学成分及指纹图谱研究进展. 药学研究. 2024(03): 274-281 .
    2. 张森,欧婧,豆晓霞,刘晓东,付本懂. 太子参及提取物对动物免疫调节作用研究进展. 动物医学进展. 2024(05): 97-102 .
    3. 张春雨,邢鹏,周福荣,肖逸豪,赵红兵. 中药复方养肝活血汤对酒精性肝病的临床研究. 中国民族医药杂志. 2024(09): 11-14 .
    4. 倪建成,范永飞,叶祖云. 太子参化学成分、药理作用和应用的研究进展. 中草药. 2023(06): 1963-1977 .
    5. 游绍伟,詹亚梅,王文素,何典城,蓬兴柱,王学勇. 基于“脾虚宛滞”探讨慢性萎缩性胃炎“炎癌转化”与防治思路. 中国实验方剂学杂志. 2023(21): 188-195 .
    6. 文丁苑,梁双敏,国琦,宋晓晓,葛长荣,肖智超. 榆黄菇多糖提取工艺优化及其免疫调节活性评价. 现代食品科技. 2023(10): 233-243 .
    7. 谢雄雄,孟璞岩,朱灵芝,陈宜均,龚斌,李康琴,邓绍勇. 太子参的药理活性、化学成分及繁殖栽培研究进展. 南方林业科学. 2023(05): 60-64+78 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return