CUI Yan, GUO Jiayan, XUAN Xiaoting, et al. Effect of High Pressure Homogenization on the Stability and Quality of Not-From-Concentrate Cloudy Honey Peach (Prunus persica L.) Juice[J]. Science and Technology of Food Industry, 2022, 43(18): 322−330. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110085.
Citation: CUI Yan, GUO Jiayan, XUAN Xiaoting, et al. Effect of High Pressure Homogenization on the Stability and Quality of Not-From-Concentrate Cloudy Honey Peach (Prunus persica L.) Juice[J]. Science and Technology of Food Industry, 2022, 43(18): 322−330. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110085.

Effect of High Pressure Homogenization on the Stability and Quality of Not-From-Concentrate Cloudy Honey Peach (Prunus persica L.) Juice

More Information
  • Received Date: November 09, 2021
  • Available Online: July 05, 2022
  • In order to determine the effect of high pressure homogenization (HPH) on the stability and quality of not-from-concentrate (NFC) cloudy honey peach juice, the samples were subjected to HPH processing with 20~40 MPa for 1~2 successive passes. The changes in turbidity, centrifugation precipitating rate, particle size distribution, Zeta potential, water soluble pectin content, pectin methylesterase (PME) activity, pH, total soluble solids (TSS), total acidity (TA), TSS/TA, reducing sugar content, color, total phenol and VC content were evaluated. The results showed that HPH could effectively improve the stability of NFC cloudy honey peach juice. With the treatment of 30~40 MPa/1 and 20~40 MPa/2, the centrifugation precipitating rates significantly decreased by 13.49%~24.22% (P<0.05), while the mean particle diameter decreased from 1853.67 nm to 501.10~665.27 nm, as compared to that in untreated samples. Moreover, the absolute Zeta potential significantly increased (P<0.05). As the pressure and successive pass increased, the water soluble pectin content tended to increase, while the PME activity gradually decreased. HPH observably increased the L* value of cloudy peach juice, and reduced its browning index (P<0.05), indicating the color of NFC cloudy peach juice was markedly improved. Juice homogenized at 30 MPa/1 showed the best quality. The contents of total phenol and VC were significantly enhanced (P<0.05), whereas no change was found for pH, TSS, TA and TSS/TA levels (P>0.05). HPH decreased the pH, TSS, TA, total phenol and VC content with increasing pass number (P<0.05), leading a decline in juice quality. HPH treatment could dramatically improve the stability of NFC cloudy peach juice, and inhibit browning and improve its total phenol and VC levels.
  • [1]
    SPILIMBERGO S, CIOLA L. Supercritical CO2 and N2O pasteurisation of peach and kiwi juice[J]. International Journal of Food Science and Technology,2010,45(8):1619−1625. doi: 10.1111/j.1365-2621.2010.02305.x
    [2]
    WANG X Y, WANG S S, WANG W J, et al. Comparison of the effects of dynamic high-pressure microfluidization and conventional homogenization on the quality of peach juice[J]. Journal of the Science of Food and Agriculture,2019,99(13):5994−6000. doi: 10.1002/jsfa.9874
    [3]
    朱麟, 凌建刚, 尚海涛, 等. 冰温对湖景蜜露桃贮藏品质影响[J]. 食品与机械,2016,32(12):115−123. [ZHU L, LING J G, SHANG H T, et al. Effects of controlled freezing-point storage treatment on quality of ''Hujingmilu'' juicy peaches[J]. Food and Machinery,2016,32(12):115−123. doi: 10.13652/j.issn.1003-5788.2016.12.025

    ZHU L, LING J G, SHANG H T, et al. Effects of controlled freezing-point storage treatment on quality of “ Hujingmilu” juicy peaches[J]. Food and Machinery, 2016, 32(12): 115-123. doi: 10.13652/j.issn.1003-5788.2016.12.025
    [4]
    马亚琴, 贾蒙, 张晨. 高压均质技术在果汁加工中的应用[J]. 食品与发酵工业,2021,47(3):265−273. [MA Y Q, JIA M, ZHANG C. Application of high pressure homogenization technology in fruit juice processing[J]. Food and Fermentation Industries,2021,47(3):265−273. doi: 10.13995/j.cnki.11-1802/ts.025247

    MA Y Q, JIA M, ZHANG C. Application of high pressure homogenization technology in fruit juice processing[J]. Food and Fermentation Industries, 2021, 47(3): 265-273. doi: 10.13995/j.cnki.11-1802/ts.025247
    [5]
    WELLALA C K D, BI J F, LIU X, et al. Effect of high pressure homogenization on water-soluble pectin characteristics and bioaccessibility of carotenoids in mixed juice[J]. Food Chemistry,2022,371:131073. doi: 10.1016/j.foodchem.2021.131073
    [6]
    ZHOU L Y, GUAN Y J, BI J F, et al. Change of the rheological properties of mango juice by high pressure homogenization[J]. Lwt-Food Science and Technology,2017,82:121−130. doi: 10.1016/j.lwt.2017.04.038
    [7]
    MESA J, HINESTROZA-CORDOBA L I, BARRERA C, et al. High homogenization pressures to improve food quality, functionality and sustainability[J]. Molecules,2020,25(14):3305. doi: 10.3390/molecules25143305
    [8]
    宁椿, 周林燕, 毕金峰, 等. 高压均质技术结合VC处理对桃浊汁微生物和品质的影响[J]. 中国食品学报,2019,19(11):141−149. [NING C, ZHOU L Y, BI J F, et al. Effect of high pressure homogenization on microorganism and quality of cloudy peach juice with VC[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(11):141−149.

    NING C, ZHOU L Y, BI J F, et al. Effect of high pressure homogenization on microorganism and quality of cloudy peach juice with/without VC [J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(11): 141-149.
    [9]
    YU Z Y, JIANG S W, CAO X M, et al. Effect of high pressure homogenization (HPH) on the physical properties of taro (Colocasia esculenta (L). Schott) pulp[J]. Journal of Food Engineering,2016,177:1−8. doi: 10.1016/j.jfoodeng.2015.10.042
    [10]
    WELLALA C K D, BI J F, LIU X, et al. Effect of high pressure homogenization combined with juice ratio on water-soluble pectin characteristics, functional properties and bioactive compounds in mixed juices[J]. Innovative Food Science and Emerging Technologies,2020,60:102279. doi: 10.1016/j.ifset.2019.102279
    [11]
    ZHU D, KOU C, WEI L, et al. Effects of high pressure homogenization on the stability of cloudy apple juice[J]. IOP Conference Series:Earth and Environmental Science,2019,358:022059. doi: 10.1088/1755-1315/358/2/022059
    [12]
    SZCZEPANSKA J, SKAPSKA S, POLASKA M, et al. High pressure homogenization with a cooling circulating system: The effect on physiochemical and rheological properties, enzymes, and carotenoid profile of carrot juice[J]. Food Chemistry,2021,370:131023.
    [13]
    YILDIZ G. Application of ultrasound and high-pressure homogenization against high temperature-short time in peach juice[J]. Journal of Food Process Engineering,2019,42(3):e12997. doi: 10.1111/jfpe.12997
    [14]
    ROJAS M L, LEITE T S, CRISTIANINI M, et al. Peach juice processed by the ultrasound technology: Changes in its microstructure improve its physical properties and stability[J]. Food Research International,2016,82:22−33. doi: 10.1016/j.foodres.2016.01.011
    [15]
    SENTANDREU E, GURREA M D, BETORET N, et al. Changes in orange juice characteristics due to homogenization and centrifugation[J]. Journal of Food Engineering,2011,105(2):241−245. doi: 10.1016/j.jfoodeng.2011.02.027
    [16]
    RAO L, GUO X F, PANG X L, et al. Enzyme activity and nutritional quality of peach (Prunus persica) juice: Effect of high hydrostatic pressure[J]. International Journal of Food Properties,2014,17(6):1406−1417. doi: 10.1080/10942912.2012.716474
    [17]
    KORTEI N K, APPIAH V, ODAMTTEN G T, et al. Determination of color parameters of gamma irradiated fresh and dried mushrooms during storage[J]. Croatian Journal for Food Technology, Biotechnology and Nutrition,2015,10(1/2):66−71.
    [18]
    曹健康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007: 39-41, 44-46

    CAO J K, JIANG W B, ZHAO Y M. Experiment guidance of postharvest physiology and biochemistry of fruits and vegetables[M]. Beijing: China Light Industry Press, 2007: 39−41, 44−46.
    [19]
    YAP J Y, HII C L, ONG S P, et al. Effects of drying on total polyphenols content and antioxidant properties of Carica papaya leaves[J]. Journal of the Science of Food and Agriculture,2020,100(7):2932−2937. doi: 10.1002/jsfa.10320
    [20]
    SILVA V M, SATO A C K, BARBOSA G, et al. The effect of homogenisation on the stability of pineapple pulp[J]. International Journal of Food Science and Technology,2010,45(10):2127−2133. doi: 10.1111/j.1365-2621.2010.02386.x
    [21]
    关云静. 高压均质对NFC芒果汁微生物和品质的影响[D]. 北京: 中国农业科学院, 2016: 37

    GUAN Y J. Effect of high pressure homogenization on microbial and quality attributes of not-from-concentrate mango juice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016: 37.
    [22]
    KARACAM C H, SAHIN S, OZTOP M H. Effect of high pressure homogenization (microfluidization) on the quality of Ottoman strawberry (F-ananassa) juice[J]. Lwt-Food Science and Technology,2015,64(2):932−937. doi: 10.1016/j.lwt.2015.06.064
    [23]
    KUBO M T K, AUGUSTO P E D, CRISTIANINI M. Effect of high pressure homogenization (HPH) on the physical stability of tomato juice[J]. Food Research International,2013,51(1):170−179. doi: 10.1016/j.foodres.2012.12.004
    [24]
    LIU X, LIU J N, BI J F, et al. Effects of high pressure homogenization on pectin structural characteristics and carotenoid bioaccessibility of carrot juice[J]. Carbohydrate Polymers,2019,203:176−184. doi: 10.1016/j.carbpol.2018.09.055
    [25]
    MOELANTS K R N, JOLIE R P, PALMERS S K J, et al. The effects of process-induced pectin changes on the viscosity of carrot and tomato sera[J]. Food and Bioprocess Technology,2013,6(10):2870−2883. doi: 10.1007/s11947-012-1004-5
    [26]
    LIU X, LIU J N, BI J F, et al. Effects of high pressure homogenization on physical stability and carotenoid degradation kinetics of carrot beverage during storage[J]. Journal of Food Engineering,2019,263:63−69. doi: 10.1016/j.jfoodeng.2019.05.034
    [27]
    LIU J N, BI J F, MCCLEMENTS D J, et al. Impacts of thermal and non-thermal processing on structure and functionality of pectin in fruit- and vegetable- based products: A review[J]. Carbohydrate Polymers,2020,250:116890. doi: 10.1016/j.carbpol.2020.116890
    [28]
    易俊洁. 基于清洁标签理念的苹果与猕猴桃复合浊汁品质研究[D]. 北京: 中国农业大学, 2017: 73

    YI J J. Quality changes in cloudy apple-kiwifruit mixed juice: Innovative clean label concept[D]. Beijing: China Agricultural University, 2017: 73.
    [29]
    LIU J N, BI J F, LIU X, et al. Modelling and optimization of high-pressure homogenization of not-from-concentrate juice: Achieving better juice quality using sustainable production[J]. Food Chemistry,2022,370:131058. doi: 10.1016/j.foodchem.2021.131058
    [30]
    VELAZQUEZ-ESTRADA R M, HERNANDEZ-HERRERO M M, GUAMIS-LOPEZ B, et al. Influence of ultra-high pressure homogenisation on physicochemical and sensorial properties of orange juice in comparison with conventional thermal processing[J]. International Journal of Food Science and Technology,2019,54(5):1858−1864. doi: 10.1111/ijfs.14089
    [31]
    SAUCEDA-GALVEZ J N, CODINA-TORRELLA I, MARTINEZ-GARCIA M, et al. Combined effects of ultra-high pressure homogenization and short-wave ultraviolet radiation on the properties of cloudy apple juice[J]. LWT-Food Science and Technology,2021,136:110286. doi: 10.1016/j.lwt.2020.110286
    [32]
    CSERHALMI Z, SASS-KISS A, TOTH-MARKUS M, et al. Study of pulsed electric field treated citrus juices[J]. Innovative Food Science and Emerging Technologies,2006,7(1-2):49−54. doi: 10.1016/j.ifset.2005.07.001
    [33]
    KRUSZEWSKI B, ZAWADA K, KARPINSKI P. Impact of high-pressure homogenization parameters on physicochemical characteristics, bioactive compounds content, and antioxidant capacity of blackcurrant juice[J]. Molecules,2021,26(6):1802. doi: 10.3390/molecules26061802
    [34]
    PATRIGNANI F, TABANELLI G, SIROLI L, et al. Combined effects of high pressure homogenization treatment and citral on microbiological quality of apricot juice[J]. International Journal of Food Microbiology,2013,160(3):273−281. doi: 10.1016/j.ijfoodmicro.2012.10.021
    [35]
    BENJAMIN O, GAMRASNI D. Microbial, nutritional, and organoleptic quality of pomegranate juice following high-pressure homogenization and low-temperature pasteurization[J]. Journal of Food Science,2020,85(3):592−599. doi: 10.1111/1750-3841.15032
  • Cited by

    Periodical cited type(13)

    1. 王洪江,赵品贞,姬庆,张建忠,王兴伟,夏书芹,张晓鸣. 影响蚝油气味品质的关键风味化合物的研究. 食品与发酵工业. 2025(07): 309-315 .
    2. 张丽华,王子阳,王文博,范雯,白杨,纵伟. 顶空固相微萃取-气相色谱-质谱联用结合气味活度值法分析不同脱腥方法对鸡爪挥发性风味物质的影响. 肉类研究. 2025(04): 17-23 .
    3. 黄磊,孙纪录,张彩璇,张海恩,郭明珠. 淡水鱼腥味物质检测及脱腥技术研究进展. 食品研究与开发. 2024(04): 209-216 .
    4. 付靖雯,陈昌威,沈祥皓,杨柳莺,王则程,杨金玉,盘赛昆. 响应面法优化紫贻贝脱腥及预处理加工工艺. 中国调味品. 2024(06): 15-21 .
    5. 王志龙,王禹,段静瑶,苏岩峰,喻佩. 海参制品腥味化合物形成与脱腥技术研究进展. 中国调味品. 2024(06): 206-212 .
    6. 冯瑞,梁结桦,田柬昕,赵影,张宇,黄达荣,杜冰,钟碧銮. 基于电子鼻和顶空固相微萃取-气相色谱-质谱技术分析不同品种鱼胶的风味差异. 食品科技. 2024(05): 289-298 .
    7. 洪林欣,童星,孙乐常,吴昌正,尹开平,刘康,林端权,张凌晶. 酶解前后牡蛎肉风味变化研究. 食品与发酵工业. 2024(20): 120-128 .
    8. 李放,邓林艳,张婉婷,徐文思,杨祺福,王伯华,杨品红. 淡水虾腥味脱除技术研究进展. 农产品加工. 2023(03): 89-92 .
    9. 石林凡,李周茹,任中阳,刘光明,翁武银. 贝类腥味物质及形成机理研究进展. 中国食品学报. 2023(03): 406-415 .
    10. 陈雅纯,王利文,马爱进,桑亚新,孙纪录. 市售低值贝类加工食品中原肌球蛋白致敏性评估及其消减技术. 食品科学. 2023(07): 169-175 .
    11. 夏强,黄思强,梁倚绮,徐乐,周昌瑜,党亚丽,曹锦轩,涂茂林,孙杨赢,潘道东. 畜禽类肝脏腥味物质与脱腥技术研究进展. 肉类研究. 2023(07): 28-34 .
    12. 刘泽祺,李明霞,杨琳,郑华,林捷,吴绍宗,郭宗林,雷红涛. 畜禽副产物腥味形成机制及脱腥方法研究进展. 食品安全质量检测学报. 2023(16): 86-93 .
    13. 张美琪,代文洁,吴禹琪,郑佳,李松,秦茂林,张淑华,吴同. 酒糟基磁性活性碳制备及其亚甲基蓝吸附机能分析. 宜宾学院学报. 2022(12): 105-109 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (241) PDF downloads (40) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return