Citation: | ZHANG Chaojie, YANG Chunyan, YIN Hao, et al. Researches and Strategies on Advanced Treatment and Resources Recycling of Dairy Wastewater[J]. Science and Technology of Food Industry, 2022, 43(22): 422−428. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100175. |
[1] |
HENA S, ZNAD H, HEONG K T, et al. Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis[J]. Water Research,2018,128:267−277. doi: 10.1016/j.watres.2017.10.057
|
[2] |
SIVAPRAKASAM S, BALAJI K. A review of up flow anaerobic sludge fixed film (UASFF) reactor for treatment of dairy wastewater[J]. Materials Today: Proceedings,2021,43:1879−1883. doi: 10.1016/j.matpr.2020.10.822
|
[3] |
SCHIERANO M C, PANIGATTI M C, MAINE M A. Horizontal subsurface flow constructed wetlands for tertiary treatment of dairy wastewater[J]. International Journal of Phytoremediation,2018,20(9):895−900. doi: 10.1080/15226514.2018.1438361
|
[4] |
MARTÍN-RILO S, COIMBRA R N, MARTÍN-VILLACORTA J, et al. Treatment of dairy industry wastewater by oxygen injection: Performance and outlay parameters from the full scale implementation[J]. Journal of Cleaner Production,2015,86:15−23. doi: 10.1016/j.jclepro.2014.08.026
|
[5] |
BENAZZI T L, DI LUCCIO M, DALLAGO R M, et al. Continuous flow electrocoagulation in the treatment of wastewater from dairy industries[J]. Water Science and Technology,2016,73(6):1418−1425. doi: 10.2166/wst.2015.620
|
[6] |
ASHOK KUMAR S, SUBATHRA K, SRINIVASAN G, et al. Impact of tween-80 and deep eutectic solvent-based micellar-enhanced ultrafiltration in dairy wastewater treatment[J]. Chemical Engineering & Technology,2021,44(5):913−922.
|
[7] |
SU J C, WANG Y L, SU J J. Photocatalytic oxidation of dairy effluent with UV lamp or UV light-emitting diode module and biological treatment processes[J]. International Journal of Environmental Science and Technology,2019,16(2):1047−1056. doi: 10.1007/s13762-018-1736-5
|
[8] |
CALERO R, IGLESIAS-IGLESIAS R, KENNES C, et al. Organic loading rate effect on the acidogenesis of cheese whey: A comparison between UASB and SBR reactors[J]. Environmental Technology,2018,39(23):3046−3054. doi: 10.1080/09593330.2017.1371796
|
[9] |
DA SILVA A N, MACÊDO W V, SAKAMOTO I K, et al. Biohydrogen production from dairy industry wastewater in an anaerobic fluidized-bed reactor[J]. Biomass and Bioenergy,2019,120:257−264. doi: 10.1016/j.biombioe.2018.11.025
|
[10] |
CHANDRA R, CASTILLO-ZACARIAS C, DELGADO P, et al. A biorefinery approach for dairy wastewater treatment and product recovery towards establishing a biorefinery complexity index[J]. Journal of Cleaner Production,2018,183:1184−1196. doi: 10.1016/j.jclepro.2018.02.124
|
[11] |
TATEMOTO H, OSHIRO R, SHIMADA H, et al. Addition of casein to the diluents during semen transportation improves the post-thaw qualities of Okinawan native agu pig spermatozoa[J]. Nihon Danchi Chikusan Gakkaihou,2015,58(1):75−86.
|
[12] |
CADÉE J A, CHANG C Y, CHEN C W, et al. Bovine casein hydrolysate (C12 peptide) reduces blood pressure in prehypertensive subjects[J]. American Journal of Hypertension,2007,20(1):1−5. doi: 10.1016/j.amjhyper.2006.06.005
|
[13] |
RYDER K, ALI M A, BILLAKANTI J, et al. Evaluation of dairy co-product containing composite solutions for the formation of bioplastic films[J]. Journal of Polymers and the Environment,2020,28(2):725−736. doi: 10.1007/s10924-019-01635-4
|
[14] |
刘明真, 王彤文, 张涛, 等. 牛乳极性脂质的提取工艺优化及成分鉴定[J]. 食品工业科技,2021,43(1):7. [LIU M, WANG T, ZHANG T, et al. Optimization of extraction process and composition identification of polar lipids in milk[J]. Science and Technology of Food Industry,2021,43(1):7.
|
[15] |
DANESHVAR E, ZARRINMEHR M J, KOUTRA E, et al. Sequential cultivation of microalgae in raw and recycled dairy wastewater: Microalgal growth, wastewater treatment and biochemical composition[J]. Bioresource Technology,2019,273:556−564. doi: 10.1016/j.biortech.2018.11.059
|
[16] |
SADIK M A. A Review of promising electrocoagulation technology for the treatment of wastewater[J]. Advances in Chemical Engineering and Science,2019,9(1):109. doi: 10.4236/aces.2019.91009
|
[17] |
BENAISSA F, KERMET-SAID H, MOULAI-MOSTEFA N. Optimization and kinetic modeling of electrocoagulation treatment of dairy wastewater[J]. Desalination and Water Treatment,2016,57(13):5988−5994. doi: 10.1080/19443994.2014.985722
|
[18] |
AITBARA A, CHERIFI M, HAZOURLI S, et al. Continuous treatment of industrial dairy effluent by electrocoagulation using aluminum electrodes[J]. Desalination and Water Treatment,2016,57(8):3395−3404. doi: 10.1080/19443994.2014.989411
|
[19] |
TORRES-SANCHEZ A L, LOPEZ-CERVERA S J, DE LA ROSA C, et al. Electrocoagulation process coupled with advance oxidation techniques to treatment of dairy industry wastewater[J]. International Journal of Electrochemical Science,2014,9(7):6103−6112.
|
[20] |
TURAN N B. The application of hybrid electrocoagulation–electrooxidation system for the treatment of dairy wastewater using different electrode connections[J]. Separation Science and Technology,2021,56(10):1788−1801. doi: 10.1080/01496395.2020.1788596
|
[21] |
GUVENC S Y, ERKAN H S, VARANK G, et al. Optimization of paper mill industry wastewater treatment by electrocoagulation and electro-Fenton processes using response surface methodology[J]. Water Science and Technology,2017,76(8):2015−2031. doi: 10.2166/wst.2017.327
|
[22] |
CHEZEAU B, BOUDRICHE L, VIAL C, et al. Treatment of dairy wastewater by electrocoagulation process: Advantages of combined iron/aluminum electrodes[J]. Separation Science and Technology,2020,55(14):2510−2527. doi: 10.1080/01496395.2019.1638935
|
[23] |
姜涛, 王帅, 单德臣, 等. 对膜技术在乳品废水处理中应用的几点探讨[J]. 环境工程,2021(1):105−106. [JIANG T, WANG S, SHAN D, et al. Discussion on the application of membrane technology in dairy wastewater treatment[J]. Environmental Engineering,2021(1):105−106.
|
[24] |
杜艳春, 李祝, 李猷, 等. 乳品废水处理中膜技术的应用研究[J]. 化学与生物工程,2015,32(5):64−67. [DU Y, LI Z, LI Y, et al. Application of membrane technology in dairy wastewater treatment[J]. Chemistry & Bioengineering,2015,32(5):64−67. doi: 10.3969/j.issn.1672-5425.2015.05.017
|
[25] |
KIRICHUK I, ZMIEVSKIY Y, MIRONCHUK V. Treatment of dairy effluent model solutions by nanofiltration and reverse osmosis[J]. Processes and Equipment of Food Productions,2014,3(2):280−287.
|
[26] |
BORTOLUZZI A C, FAITÃO J A, DI LUCCIO M, et al. Dairy wastewater treatment using integrated membrane systems[J]. Journal of Environmental Chemical Engineering,2017,5(5):4819−4827. doi: 10.1016/j.jece.2017.09.018
|
[27] |
MIAO R, MA B, LI P, et al. Mitigation mechanism of ozonation in the casein fouling of ultrafiltration membranes: Possible application in dairy wastewater treatment[J]. Journal of Membrane Science,2021,629:1−8.
|
[28] |
AMIRIAN P, BAZRAFSHAN E, PAYANDEH A. Photocatalytic degradation of COD in dairy wastewater using CuO nanoparticles[J]. Desalination and Water Treatment,2017,65:274−283. doi: 10.5004/dwt.2017.20291
|
[29] |
KOE W S, LEE J W, CHONG W C, et al. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane[J]. Environmental Science and Pollution Research,2020,27(3):2522−2565. doi: 10.1007/s11356-019-07193-5
|
[30] |
洪和琪. 乳制品废水处理技术研究进展[J]. 沈阳大学学报,2016,28(3):203−205. [HONG H Q. Advances in research of dairy wastewater treatment[J]. Journal of Shenyang University,2016,28(3):203−205.
|
[31] |
冯瑶, 张艳楠, 魏来, 等. SBR法处理模拟乳制品废水处理效果的研究[J]. 哈尔滨商业大学学报,2017,33(6):675−676. [FENG Y, ZHANG Y, WEI L, et al. Study on simulated diary wastewater treatment effect by SBR process[J]. Journal of Harbin University of Commerce,2017,33(6):675−676.
|
[32] |
NOWROUZI M, ABYAR H. A framework for the design and optimization of integrated fixed-film activated sludge-membrane bioreactor configuration by focusing on cost-coupled life cycle assessment[J]. Journal of Cleaner Production,2021,296:1−11.
|
[33] |
KOWALSKA E, PATUREJ E, ZIELIŃSKA M. Use of Lecane rotifers for limiting Thiothrix filamentous bacteria in bulking activated sludge in a dairy wastewater treatment plant[J]. Archives of Biological Sciences,2014,66(4):1371−1378. doi: 10.2298/ABS1404371K
|
[34] |
SINGH S, RINTA-KANTO J M, KETTUNEN R, et al. Anaerobic treatment of LCFA-containing synthetic dairy wastewater at 20 C: Process performance and microbial community dynamics[J]. Science of The Total Environment,2019,691:960−968. doi: 10.1016/j.scitotenv.2019.07.136
|
[35] |
易慧, 张静, 陈志伟, 等. ABR处理乳品废水的研究[J]. 环境科学与技术,2012,35(12J):262−266. [YI H, ZHANG J, CHEN Z W, et al. Study on anaerobic baffled reactor for treatment of dairy wastewater[J]. Environmental Science & Technology,2012,35(12J):262−266.
|
[36] |
李鹏芳, 刘梦, 张科亭, 等. 厌氧膜生物反应器对乳品废水处理效果的研究[J]. 四川环境,2018,37(5):12−18. [LI P F, LIU M, ZHANG K T, et al. Performance of anaerobic membrane bioreactor on dairy wastewater treatment[J]. Sichuan Environment,2018,37(5):12−18. doi: 10.3969/j.issn.1001-3644.2018.05.003
|
[37] |
韩冬妮. UASB+双级好氧生物工艺处理豆奶制品废水[J]. 环境科技,2011,24(6):45−47. [HAN D N. UASB+Two stage aerobic biological process for treatment of wastewater from milk products[J]. Environmental Science and Technology,2011,24(6):45−47.
|
[38] |
张晓晶, 张志, 裘思谦, 等. 基于UASB+MBR乳制品废水处理系统的研制及运行效果[J]. 中国现代教育装备,2021(367):59−62. [ZHANG X, ZHANG Z, QIU S, et al. The design and operation effect of dairy wastewater treatment system based on UASB+MBR[J]. China Modern Education Equipment,2021(367):59−62. doi: 10.13492/j.cnki.cmee.2021.15.018
|
[39] |
HAN J, LEI L, CAI F, et al. Treatment of UASB-treated recycled paper wastewater using SBR and SBBR: A Comparison[J]. Bio Resources,2020,15(2):3473−3486.
|
[40] |
TERCINIER L, YE A, ANEMA S G, et al. Interactions of casein micelles with calcium phosphate particles[J]. Journal of Agricultural and Food Chemistry,2014,62(25):5983−5992. doi: 10.1021/jf5018143
|
[41] |
杨勇, 徐志霞, 黄循吟, 等. 等电点法提取酪蛋白的方法改进[J]. 海南示范大学学报,2016,29(1):109−111. [YANG Y, XU Z, HUANG X, et al. The optimization of extracting casein in the isoelectric point[J]. Journal of Hainan Normal University,2016,29(1):109−111.
|
[42] |
WU Z, YIN H, LIU W, et al. Xanthan gum assisted foam fractionation for the recovery of casein from the dairy wastewater[J]. Preparative Biochemistry & Biotechnology,2020,50(1):37−46.
|
[43] |
李子薇, 胡楠, 杨松琴, 等. 纳米颗粒作为稳泡剂泡沫分离酪蛋白的工艺[J]. 化工进展,2020,39(3):851−857. [LI Z, HU N, YANG S, et al. Technology of foam separation of casein using nanoparticle as a foam stabilizer[J]. Chemical Industry and Engineering Progress,2020,39(3):851−857. doi: 10.16085/j.issn.1000-6613.2019-0963
|
[44] |
GHOSH R, SAHU A, PUSHPAVANAM S. Removal of trace hexavalent chromium from aqueous solutions by ion foam fractionation[J]. Journal of Hazardous Materials,2019,367:589−598. doi: 10.1016/j.jhazmat.2018.12.105
|
[45] |
BARACKOV I, MAUSE A, KAPOOR S, et al. Investigation of structural changes of β-casein and lysozyme at the gas-liquid interface during foam fractionation[J]. Journal of Biotechnology,2012,161(2):138−146. doi: 10.1016/j.jbiotec.2012.01.030
|
[46] |
ZHANG Y, DI R, ZHANG H, et al. Effective recovery of casein from its aqueous solution by ultrasonic treatment assisted foam fractionation: inhibiting molecular aggregation[J]. Journal of Food Engineering,2020,284:1−10.
|
[47] |
LI R, CHANG Y, ZHANG L, et al. Increase of bubble size playing a critical role in foam-induced protein aggregation: Aggregation of BSA in foam fractionation[J]. Chemical Engineering Science,2017,174:387−395. doi: 10.1016/j.ces.2017.09.036
|
[48] |
LI R, WU Z, WANG Y, et al. β-cyclodextrin preventing protein aggregation in foam fractionation of bovine serum albumin[J]. Journal of Biotechnology,2016,220:33−34. doi: 10.1016/j.jbiotec.2016.01.007
|
[49] |
CHAURASIA A K, SHANKAR R, MONDAL P. Effects of nickle, nickle-cobalt and nickle-cobalt-phosphorus nanocatalysts for enhancing biohydrogen production in microbial electrolysis cells using paper industry wastewater[J]. Journal of Environmental Management,2021,298:1−11.
|
[50] |
ADEWALE P, DUMONT M J, NGADI M. Recent trends of biodiesel production from animal fat wastes and associated production techniques[J]. Renewable and Sustainable Energy Reviews,2015,45:574−588. doi: 10.1016/j.rser.2015.02.039
|
[51] |
CRUZ I A, DE MELO L, LEITE A N, et al. A new approach using an open-source low cost system for monitoring and controlling biogas production from dairy wastewater[J]. Journal of Cleaner Production,2019,241:1−9.
|
[52] |
KIRANKUMAR P, KRISHNA S V, CHAITANYA N, et al. Effect of operational parameters on biohydrogen production from dairy wastewater in batch and continuous reactors[J]. Biofuels,2017,8(6):693−699. doi: 10.1080/17597269.2016.1196327
|
[53] |
ZKERI E, ILIOPOULOU A, KATSARA A, et al. Comparing the use of a two-stage MBBR system with a methanogenic MBBR coupled with a microalgae reactor for medium-strength dairy wastewater treatment[J]. Bioresource Technology,2021,323:1−8.
|
[54] |
SWAIN P, TIWARI A, PANDEY A. Enhanced lipid production in Tetraselmis sp. by two stage process optimization using simulated dairy wastewater as feedstock[J]. Biomass and Bioenergy,2020,139:1−7.
|
[55] |
XIONG W, GUO S, JOUSSET A, et al. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome[J]. Soil Biology and Biochemistry,2017,114:238−247. doi: 10.1016/j.soilbio.2017.07.016
|
[56] |
SINGH A K, SINGH G, GAUTAM D, et al. Optimization of dairy sludge for growth of Rhizobium cells[J]. BioMed Research International,2013,1:1−5.
|
[57] |
HALDER N, GOGOI M, SHARMIN J, et al. Microbial consortium–based conversion of dairy effluent into biofertilizer[J]. Journal of Hazardous, Toxic, and Radioactive Waste,2020,24(1):1−7.
|
[58] |
MARASSI R J, QUEIROZ L G, SILVA D C V, et al. Performance and toxicity assessment of an up-flow tubular microbial fuel cell during long-term operation with high-strength dairy wastewater[J]. Journal of Cleaner Production,2020,259:1−10.
|
[59] |
SEKAR A D, JAYABALAN T, MUTHUKUMAR H, et al. Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode[J]. Energy,2019,172:173−180. doi: 10.1016/j.energy.2019.01.102
|
[60] |
FARIA A, GONÇALVES L, PEIXOTO J M, et al. Resources recovery in the dairy industry: bioelectricity production using a continuous microbial fuel cell[J]. Journal of Cleaner Production,2017,140:971−976. doi: 10.1016/j.jclepro.2016.04.027
|
[61] |
SUNKESULA V, KOMMINENI A, MARELLA C, et al. Foam fractionation technology for enrichment and recovery of cheese whey proteins[J]. Asian Journal of Dairy and Food Research,2020,39(3):187−194.
|
[62] |
CHEN Z, LUO J, CHEN X, et al. Fully recycling dairy wastewater by an integrated isoelectric precipitation-nanofiltration-anaerobic fermentation process[J]. Chemical Engineering Journal,2016,283:476−485. doi: 10.1016/j.cej.2015.07.086
|
1. |
王露,蔡雷,刘奇华,崔春. 花椒籽粕蛋白质的酶提工艺研究. 中国调味品. 2025(01): 206-209 .
![]() | |
2. |
陶静,翁霞,王喜珠. 甘谷伏椒挥发油成分及抗氧化活性研究. 中国调味品. 2024(04): 79-84 .
![]() | |
3. |
李宁,梁世岳,刘正群,张敏,郑梓,王雪梅,闫峻,穆淑琴. 花椒籽对蛋鸡生产性能、血清指标及蛋品质的影响. 饲料研究. 2024(18): 35-39 .
![]() |