ZHANG Chaojie, YANG Chunyan, YIN Hao, et al. Researches and Strategies on Advanced Treatment and Resources Recycling of Dairy Wastewater[J]. Science and Technology of Food Industry, 2022, 43(22): 422−428. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100175.
Citation: ZHANG Chaojie, YANG Chunyan, YIN Hao, et al. Researches and Strategies on Advanced Treatment and Resources Recycling of Dairy Wastewater[J]. Science and Technology of Food Industry, 2022, 43(22): 422−428. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100175.

Researches and Strategies on Advanced Treatment and Resources Recycling of Dairy Wastewater

More Information
  • Received Date: October 17, 2021
  • Available Online: September 07, 2022
  • Dairy wastewater is a typical food-processing wastewater. The direct discharge of dairy wastewater is easy to cause serious pollution of accepting water body due to its characters of large discharging amount, high organic content and weak water's quality stability. The advanced treatment and resources recycling of dairy wastewater have become a key to achieving the sustainable development of dairy industry. In this work, the current researches on the treating methods and resources recovery of dairy wastewater are reviewed. Though analyzing the advantages and application bottlenecks of various methods, a comprehensive strategy integrating foam fractionation, sequencing batch reactor (SBR) and membrane separation is proposed. Firstly, foam fractionation have been used to recover casein from dairy wastewater. The precipitates in the foamate could be used as the feed additives of livestock. The foamate could be served as the fermentation medium of microorganisms for synthesizing biofuels or constructing microbial fuel cells. Subsequently, SBR method is used to further reduce the chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and phosphate content in the effluent. Finally, the nitrites in the effluent of SBR are removed by using membrane separation and they would be used in biofertilizer production. The advanced treatment period of dairy wastewater in this strategy is short and the resources recovery from the concentrated solutions is easy to perform. Furthermore, the dilute solution of membrane separation could be used in circulation cooling operation and farm irrigation.
  • [1]
    HENA S, ZNAD H, HEONG K T, et al. Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis[J]. Water Research,2018,128:267−277. doi: 10.1016/j.watres.2017.10.057
    [2]
    SIVAPRAKASAM S, BALAJI K. A review of up flow anaerobic sludge fixed film (UASFF) reactor for treatment of dairy wastewater[J]. Materials Today: Proceedings,2021,43:1879−1883. doi: 10.1016/j.matpr.2020.10.822
    [3]
    SCHIERANO M C, PANIGATTI M C, MAINE M A. Horizontal subsurface flow constructed wetlands for tertiary treatment of dairy wastewater[J]. International Journal of Phytoremediation,2018,20(9):895−900. doi: 10.1080/15226514.2018.1438361
    [4]
    MARTÍN-RILO S, COIMBRA R N, MARTÍN-VILLACORTA J, et al. Treatment of dairy industry wastewater by oxygen injection: Performance and outlay parameters from the full scale implementation[J]. Journal of Cleaner Production,2015,86:15−23. doi: 10.1016/j.jclepro.2014.08.026
    [5]
    BENAZZI T L, DI LUCCIO M, DALLAGO R M, et al. Continuous flow electrocoagulation in the treatment of wastewater from dairy industries[J]. Water Science and Technology,2016,73(6):1418−1425. doi: 10.2166/wst.2015.620
    [6]
    ASHOK KUMAR S, SUBATHRA K, SRINIVASAN G, et al. Impact of tween-80 and deep eutectic solvent-based micellar-enhanced ultrafiltration in dairy wastewater treatment[J]. Chemical Engineering & Technology,2021,44(5):913−922.
    [7]
    SU J C, WANG Y L, SU J J. Photocatalytic oxidation of dairy effluent with UV lamp or UV light-emitting diode module and biological treatment processes[J]. International Journal of Environmental Science and Technology,2019,16(2):1047−1056. doi: 10.1007/s13762-018-1736-5
    [8]
    CALERO R, IGLESIAS-IGLESIAS R, KENNES C, et al. Organic loading rate effect on the acidogenesis of cheese whey: A comparison between UASB and SBR reactors[J]. Environmental Technology,2018,39(23):3046−3054. doi: 10.1080/09593330.2017.1371796
    [9]
    DA SILVA A N, MACÊDO W V, SAKAMOTO I K, et al. Biohydrogen production from dairy industry wastewater in an anaerobic fluidized-bed reactor[J]. Biomass and Bioenergy,2019,120:257−264. doi: 10.1016/j.biombioe.2018.11.025
    [10]
    CHANDRA R, CASTILLO-ZACARIAS C, DELGADO P, et al. A biorefinery approach for dairy wastewater treatment and product recovery towards establishing a biorefinery complexity index[J]. Journal of Cleaner Production,2018,183:1184−1196. doi: 10.1016/j.jclepro.2018.02.124
    [11]
    TATEMOTO H, OSHIRO R, SHIMADA H, et al. Addition of casein to the diluents during semen transportation improves the post-thaw qualities of Okinawan native agu pig spermatozoa[J]. Nihon Danchi Chikusan Gakkaihou,2015,58(1):75−86.
    [12]
    CADÉE J A, CHANG C Y, CHEN C W, et al. Bovine casein hydrolysate (C12 peptide) reduces blood pressure in prehypertensive subjects[J]. American Journal of Hypertension,2007,20(1):1−5. doi: 10.1016/j.amjhyper.2006.06.005
    [13]
    RYDER K, ALI M A, BILLAKANTI J, et al. Evaluation of dairy co-product containing composite solutions for the formation of bioplastic films[J]. Journal of Polymers and the Environment,2020,28(2):725−736. doi: 10.1007/s10924-019-01635-4
    [14]
    刘明真, 王彤文, 张涛, 等. 牛乳极性脂质的提取工艺优化及成分鉴定[J]. 食品工业科技,2021,43(1):7. [LIU M, WANG T, ZHANG T, et al. Optimization of extraction process and composition identification of polar lipids in milk[J]. Science and Technology of Food Industry,2021,43(1):7.
    [15]
    DANESHVAR E, ZARRINMEHR M J, KOUTRA E, et al. Sequential cultivation of microalgae in raw and recycled dairy wastewater: Microalgal growth, wastewater treatment and biochemical composition[J]. Bioresource Technology,2019,273:556−564. doi: 10.1016/j.biortech.2018.11.059
    [16]
    SADIK M A. A Review of promising electrocoagulation technology for the treatment of wastewater[J]. Advances in Chemical Engineering and Science,2019,9(1):109. doi: 10.4236/aces.2019.91009
    [17]
    BENAISSA F, KERMET-SAID H, MOULAI-MOSTEFA N. Optimization and kinetic modeling of electrocoagulation treatment of dairy wastewater[J]. Desalination and Water Treatment,2016,57(13):5988−5994. doi: 10.1080/19443994.2014.985722
    [18]
    AITBARA A, CHERIFI M, HAZOURLI S, et al. Continuous treatment of industrial dairy effluent by electrocoagulation using aluminum electrodes[J]. Desalination and Water Treatment,2016,57(8):3395−3404. doi: 10.1080/19443994.2014.989411
    [19]
    TORRES-SANCHEZ A L, LOPEZ-CERVERA S J, DE LA ROSA C, et al. Electrocoagulation process coupled with advance oxidation techniques to treatment of dairy industry wastewater[J]. International Journal of Electrochemical Science,2014,9(7):6103−6112.
    [20]
    TURAN N B. The application of hybrid electrocoagulation–electrooxidation system for the treatment of dairy wastewater using different electrode connections[J]. Separation Science and Technology,2021,56(10):1788−1801. doi: 10.1080/01496395.2020.1788596
    [21]
    GUVENC S Y, ERKAN H S, VARANK G, et al. Optimization of paper mill industry wastewater treatment by electrocoagulation and electro-Fenton processes using response surface methodology[J]. Water Science and Technology,2017,76(8):2015−2031. doi: 10.2166/wst.2017.327
    [22]
    CHEZEAU B, BOUDRICHE L, VIAL C, et al. Treatment of dairy wastewater by electrocoagulation process: Advantages of combined iron/aluminum electrodes[J]. Separation Science and Technology,2020,55(14):2510−2527. doi: 10.1080/01496395.2019.1638935
    [23]
    姜涛, 王帅, 单德臣, 等. 对膜技术在乳品废水处理中应用的几点探讨[J]. 环境工程,2021(1):105−106. [JIANG T, WANG S, SHAN D, et al. Discussion on the application of membrane technology in dairy wastewater treatment[J]. Environmental Engineering,2021(1):105−106.
    [24]
    杜艳春, 李祝, 李猷, 等. 乳品废水处理中膜技术的应用研究[J]. 化学与生物工程,2015,32(5):64−67. [DU Y, LI Z, LI Y, et al. Application of membrane technology in dairy wastewater treatment[J]. Chemistry & Bioengineering,2015,32(5):64−67. doi: 10.3969/j.issn.1672-5425.2015.05.017
    [25]
    KIRICHUK I, ZMIEVSKIY Y, MIRONCHUK V. Treatment of dairy effluent model solutions by nanofiltration and reverse osmosis[J]. Processes and Equipment of Food Productions,2014,3(2):280−287.
    [26]
    BORTOLUZZI A C, FAITÃO J A, DI LUCCIO M, et al. Dairy wastewater treatment using integrated membrane systems[J]. Journal of Environmental Chemical Engineering,2017,5(5):4819−4827. doi: 10.1016/j.jece.2017.09.018
    [27]
    MIAO R, MA B, LI P, et al. Mitigation mechanism of ozonation in the casein fouling of ultrafiltration membranes: Possible application in dairy wastewater treatment[J]. Journal of Membrane Science,2021,629:1−8.
    [28]
    AMIRIAN P, BAZRAFSHAN E, PAYANDEH A. Photocatalytic degradation of COD in dairy wastewater using CuO nanoparticles[J]. Desalination and Water Treatment,2017,65:274−283. doi: 10.5004/dwt.2017.20291
    [29]
    KOE W S, LEE J W, CHONG W C, et al. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane[J]. Environmental Science and Pollution Research,2020,27(3):2522−2565. doi: 10.1007/s11356-019-07193-5
    [30]
    洪和琪. 乳制品废水处理技术研究进展[J]. 沈阳大学学报,2016,28(3):203−205. [HONG H Q. Advances in research of dairy wastewater treatment[J]. Journal of Shenyang University,2016,28(3):203−205.
    [31]
    冯瑶, 张艳楠, 魏来, 等. SBR法处理模拟乳制品废水处理效果的研究[J]. 哈尔滨商业大学学报,2017,33(6):675−676. [FENG Y, ZHANG Y, WEI L, et al. Study on simulated diary wastewater treatment effect by SBR process[J]. Journal of Harbin University of Commerce,2017,33(6):675−676.
    [32]
    NOWROUZI M, ABYAR H. A framework for the design and optimization of integrated fixed-film activated sludge-membrane bioreactor configuration by focusing on cost-coupled life cycle assessment[J]. Journal of Cleaner Production,2021,296:1−11.
    [33]
    KOWALSKA E, PATUREJ E, ZIELIŃSKA M. Use of Lecane rotifers for limiting Thiothrix filamentous bacteria in bulking activated sludge in a dairy wastewater treatment plant[J]. Archives of Biological Sciences,2014,66(4):1371−1378. doi: 10.2298/ABS1404371K
    [34]
    SINGH S, RINTA-KANTO J M, KETTUNEN R, et al. Anaerobic treatment of LCFA-containing synthetic dairy wastewater at 20 C: Process performance and microbial community dynamics[J]. Science of The Total Environment,2019,691:960−968. doi: 10.1016/j.scitotenv.2019.07.136
    [35]
    易慧, 张静, 陈志伟, 等. ABR处理乳品废水的研究[J]. 环境科学与技术,2012,35(12J):262−266. [YI H, ZHANG J, CHEN Z W, et al. Study on anaerobic baffled reactor for treatment of dairy wastewater[J]. Environmental Science & Technology,2012,35(12J):262−266.
    [36]
    李鹏芳, 刘梦, 张科亭, 等. 厌氧膜生物反应器对乳品废水处理效果的研究[J]. 四川环境,2018,37(5):12−18. [LI P F, LIU M, ZHANG K T, et al. Performance of anaerobic membrane bioreactor on dairy wastewater treatment[J]. Sichuan Environment,2018,37(5):12−18. doi: 10.3969/j.issn.1001-3644.2018.05.003
    [37]
    韩冬妮. UASB+双级好氧生物工艺处理豆奶制品废水[J]. 环境科技,2011,24(6):45−47. [HAN D N. UASB+Two stage aerobic biological process for treatment of wastewater from milk products[J]. Environmental Science and Technology,2011,24(6):45−47.
    [38]
    张晓晶, 张志, 裘思谦, 等. 基于UASB+MBR乳制品废水处理系统的研制及运行效果[J]. 中国现代教育装备,2021(367):59−62. [ZHANG X, ZHANG Z, QIU S, et al. The design and operation effect of dairy wastewater treatment system based on UASB+MBR[J]. China Modern Education Equipment,2021(367):59−62. doi: 10.13492/j.cnki.cmee.2021.15.018
    [39]
    HAN J, LEI L, CAI F, et al. Treatment of UASB-treated recycled paper wastewater using SBR and SBBR: A Comparison[J]. Bio Resources,2020,15(2):3473−3486.
    [40]
    TERCINIER L, YE A, ANEMA S G, et al. Interactions of casein micelles with calcium phosphate particles[J]. Journal of Agricultural and Food Chemistry,2014,62(25):5983−5992. doi: 10.1021/jf5018143
    [41]
    杨勇, 徐志霞, 黄循吟, 等. 等电点法提取酪蛋白的方法改进[J]. 海南示范大学学报,2016,29(1):109−111. [YANG Y, XU Z, HUANG X, et al. The optimization of extracting casein in the isoelectric point[J]. Journal of Hainan Normal University,2016,29(1):109−111.
    [42]
    WU Z, YIN H, LIU W, et al. Xanthan gum assisted foam fractionation for the recovery of casein from the dairy wastewater[J]. Preparative Biochemistry & Biotechnology,2020,50(1):37−46.
    [43]
    李子薇, 胡楠, 杨松琴, 等. 纳米颗粒作为稳泡剂泡沫分离酪蛋白的工艺[J]. 化工进展,2020,39(3):851−857. [LI Z, HU N, YANG S, et al. Technology of foam separation of casein using nanoparticle as a foam stabilizer[J]. Chemical Industry and Engineering Progress,2020,39(3):851−857. doi: 10.16085/j.issn.1000-6613.2019-0963
    [44]
    GHOSH R, SAHU A, PUSHPAVANAM S. Removal of trace hexavalent chromium from aqueous solutions by ion foam fractionation[J]. Journal of Hazardous Materials,2019,367:589−598. doi: 10.1016/j.jhazmat.2018.12.105
    [45]
    BARACKOV I, MAUSE A, KAPOOR S, et al. Investigation of structural changes of β-casein and lysozyme at the gas-liquid interface during foam fractionation[J]. Journal of Biotechnology,2012,161(2):138−146. doi: 10.1016/j.jbiotec.2012.01.030
    [46]
    ZHANG Y, DI R, ZHANG H, et al. Effective recovery of casein from its aqueous solution by ultrasonic treatment assisted foam fractionation: inhibiting molecular aggregation[J]. Journal of Food Engineering,2020,284:1−10.
    [47]
    LI R, CHANG Y, ZHANG L, et al. Increase of bubble size playing a critical role in foam-induced protein aggregation: Aggregation of BSA in foam fractionation[J]. Chemical Engineering Science,2017,174:387−395. doi: 10.1016/j.ces.2017.09.036
    [48]
    LI R, WU Z, WANG Y, et al. β-cyclodextrin preventing protein aggregation in foam fractionation of bovine serum albumin[J]. Journal of Biotechnology,2016,220:33−34. doi: 10.1016/j.jbiotec.2016.01.007
    [49]
    CHAURASIA A K, SHANKAR R, MONDAL P. Effects of nickle, nickle-cobalt and nickle-cobalt-phosphorus nanocatalysts for enhancing biohydrogen production in microbial electrolysis cells using paper industry wastewater[J]. Journal of Environmental Management,2021,298:1−11.
    [50]
    ADEWALE P, DUMONT M J, NGADI M. Recent trends of biodiesel production from animal fat wastes and associated production techniques[J]. Renewable and Sustainable Energy Reviews,2015,45:574−588. doi: 10.1016/j.rser.2015.02.039
    [51]
    CRUZ I A, DE MELO L, LEITE A N, et al. A new approach using an open-source low cost system for monitoring and controlling biogas production from dairy wastewater[J]. Journal of Cleaner Production,2019,241:1−9.
    [52]
    KIRANKUMAR P, KRISHNA S V, CHAITANYA N, et al. Effect of operational parameters on biohydrogen production from dairy wastewater in batch and continuous reactors[J]. Biofuels,2017,8(6):693−699. doi: 10.1080/17597269.2016.1196327
    [53]
    ZKERI E, ILIOPOULOU A, KATSARA A, et al. Comparing the use of a two-stage MBBR system with a methanogenic MBBR coupled with a microalgae reactor for medium-strength dairy wastewater treatment[J]. Bioresource Technology,2021,323:1−8.
    [54]
    SWAIN P, TIWARI A, PANDEY A. Enhanced lipid production in Tetraselmis sp. by two stage process optimization using simulated dairy wastewater as feedstock[J]. Biomass and Bioenergy,2020,139:1−7.
    [55]
    XIONG W, GUO S, JOUSSET A, et al. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome[J]. Soil Biology and Biochemistry,2017,114:238−247. doi: 10.1016/j.soilbio.2017.07.016
    [56]
    SINGH A K, SINGH G, GAUTAM D, et al. Optimization of dairy sludge for growth of Rhizobium cells[J]. BioMed Research International,2013,1:1−5.
    [57]
    HALDER N, GOGOI M, SHARMIN J, et al. Microbial consortium–based conversion of dairy effluent into biofertilizer[J]. Journal of Hazardous, Toxic, and Radioactive Waste,2020,24(1):1−7.
    [58]
    MARASSI R J, QUEIROZ L G, SILVA D C V, et al. Performance and toxicity assessment of an up-flow tubular microbial fuel cell during long-term operation with high-strength dairy wastewater[J]. Journal of Cleaner Production,2020,259:1−10.
    [59]
    SEKAR A D, JAYABALAN T, MUTHUKUMAR H, et al. Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode[J]. Energy,2019,172:173−180. doi: 10.1016/j.energy.2019.01.102
    [60]
    FARIA A, GONÇALVES L, PEIXOTO J M, et al. Resources recovery in the dairy industry: bioelectricity production using a continuous microbial fuel cell[J]. Journal of Cleaner Production,2017,140:971−976. doi: 10.1016/j.jclepro.2016.04.027
    [61]
    SUNKESULA V, KOMMINENI A, MARELLA C, et al. Foam fractionation technology for enrichment and recovery of cheese whey proteins[J]. Asian Journal of Dairy and Food Research,2020,39(3):187−194.
    [62]
    CHEN Z, LUO J, CHEN X, et al. Fully recycling dairy wastewater by an integrated isoelectric precipitation-nanofiltration-anaerobic fermentation process[J]. Chemical Engineering Journal,2016,283:476−485. doi: 10.1016/j.cej.2015.07.086
  • Cited by

    Periodical cited type(3)

    1. 王露,蔡雷,刘奇华,崔春. 花椒籽粕蛋白质的酶提工艺研究. 中国调味品. 2025(01): 206-209 .
    2. 陶静,翁霞,王喜珠. 甘谷伏椒挥发油成分及抗氧化活性研究. 中国调味品. 2024(04): 79-84 .
    3. 李宁,梁世岳,刘正群,张敏,郑梓,王雪梅,闫峻,穆淑琴. 花椒籽对蛋鸡生产性能、血清指标及蛋品质的影响. 饲料研究. 2024(18): 35-39 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (749) PDF downloads (71) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return