SHI Fengcui, YU Xiaohan, HAN Kunchen, et al. Optimization of Extraction Process and Characteristics of Dietary Fiber Complex in Recipes of Longevity People in Guangxi[J]. Science and Technology of Food Industry, 2022, 43(14): 215−223. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100163.
Citation: SHI Fengcui, YU Xiaohan, HAN Kunchen, et al. Optimization of Extraction Process and Characteristics of Dietary Fiber Complex in Recipes of Longevity People in Guangxi[J]. Science and Technology of Food Industry, 2022, 43(14): 215−223. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100163.

Optimization of Extraction Process and Characteristics of Dietary Fiber Complex in Recipes of Longevity People in Guangxi

More Information
  • Received Date: October 17, 2021
  • Available Online: May 07, 2022
  • Based on the previous study on the diet of the cohort of long-lived people in Guangxi, the recipes of long-lived people were summarized. In this study, eight representative dietary fiber complexes (DFC) with specific proportion in the recipes were extracted by ultrasonic assisted enzyme method, and the optimal conditions of extraction process were explored through single factor and response surface tests, the basic components and physical and chemical properties were analyzed. The results showed that the maximum yield of total dietary fiber (TDF) was 63.90%, which was basically consistent with the theoretical prediction when the addition of α-amylase was 0.3%, the ultrasonic power was 242 W, the liquid-solid ratio was 15 mL/g and the extraction temperature was 86 ℃. After optimization, the contents of protein, fat and other impurities in TDF decreased from (2.66%±0.12%) and (5.31%±0.14%) to (1.90%±0.08%) and (1.77%±0.26%) respectively, and the content of TDF increased significantly (P<0.05) from (39.71%±1.17%) to (64.83%±0.28%). The water holding capacity, swelling capacity, oil holding capacity, emulsifying capacity and emulsifying stability were increased by 5.36 g/g, 2.83 mL/g, 3.56 g/g, 21.81% and 36.8% respectively. Therefore, it could be considered that a variety of dietary fiber complexes (DFC) with different types and specific proportions had good quality, which would provides a theoretical reference for the understanding and application of the characteristics of dietary fiber complexes in the recipes of long-lived people in Guangxi.
  • [1]
    蔡达. 广西长寿之乡老人饮食与代谢特征及其相关性研究[D]. 南宁: 广西大学, 2017.

    CAI D. A correlation between diet and metabolic characteristics of healthy elderly people from longevous region in Guangxi province[D]. Nanning: Guangxi University, 2017.
    [2]
    王芳. 广西巴马长寿老人肠道菌群及其与膳食纤维多糖饮食关联性研究[D]. 南宁: 广西大学, 2015.

    WANG F. Chinese centenarians gut microbiota and its correlation with high-fiber diet[D]. Nanning: Guangxi University, 2015.
    [3]
    宋奇, 艾连中, 鲁红岩, 等. 巴马长寿饮食模式在衰老小鼠模型中的抗氧化应激效果[J]. 食品科学,2018,39(19):147−153. [SONG Q, AI L Z, LU H Y, et al. Effect of Bama longevity dietary patterns on antioxidant stress in a mouse model of aging[J]. Food Science,2018,39(19):147−153. doi: 10.7506/spkx1002-6630-201819023

    SONG Q, AI L Z, LU H Y, et al. Effect of Bama longevity dietary patterns on antioxidant stress in a mouse model of aging[J]. Food Science, 2018, 39(19): 147-153. doi: 10.7506/spkx1002-6630-201819023
    [4]
    黄燕婷, 梅丽华, 潘海博, 等. 巴马长寿特征饮食模式对自然衰老小鼠的抗衰老效果[J]. 食品科学,2021,42(5):137−144. [HUANG Y T, MEI L H, PAN H B, et al. Anti-aging effect of Bama longevity characteristic dietary patterns in naturally aging mice[J]. Food Science,2021,42(5):137−144. doi: 10.7506/spkx1002-6630-20200229-328

    HUANG Y T, MEI L H, PAN H B, et al. Anti-aging effect of Bama longevity characteristic dietary patterns in naturally aging mice[J]. Food Science, 2021, 42(5): 137-144. doi: 10.7506/spkx1002-6630-20200229-328
    [5]
    VERSPREET J, DAMEN B, BROEKAERT W F, et al. A critical look at prebiotics within the dietary fiber concept[J]. Annual Review of Food Science and Technology,2016,7(1):167−190. doi: 10.1146/annurev-food-081315-032749
    [6]
    YANG Y Y, MA S, WANG X X, et al. Modification and application of dietary fiber in foods[J]. Journal of Chemistry,2017,2017:1−8.
    [7]
    SURYANTI V, KUSUMANINGSIH T, RUMINGTYAS Y S. Physicochemical properties of dietary fibers from artocarpus camansi fruit[J]. IOP Conference Series-Materials Science and Engineering, 2017, 193(1): 012012.
    [8]
    千春录, 王兢业, 戴露婷, 等. 水芹膳食纤维提取工艺优化及其特性[J]. 食品工业科技,2017,38(22):119−124. [QIAN C L, WANG J Y, DAI L T, et al. Optimization of extraction technology of dietary fiber from Oenanthe javanica and its character[J]. Science and Technology of Food Industry,2017,38(22):119−124.

    QIAN C L, WANG J Y, DAI L T, et al. Optimization of extraction technology of dietary fiber from Oenanthe javanica and its character[J]. Science and Technology of Food Industry, 2017, 38(22): 119-124.
    [9]
    JIA F J, YANG S F, MA Y Y, et al. Extraction optimization and constipation-relieving activity of dietary fiber from Auricularia polytricha[J]. Food Bioscience, 2020, 33.
    [10]
    KUREK M A, KARP S, WYRWISZ J, et al. Physicochemical properties of dietary fibers extracted from gluten-free sources: Quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and millet (Panicum miliaceum)[J]. Food Hydrocolloids,2018,85:321−330. doi: 10.1016/j.foodhyd.2018.07.021
    [11]
    聂梦琳, 饶川艳, 莫明规, 等. 广西火麻膳食纤维提取及其特性研究[J]. 食品安全质量检测学报,2020,11(17):6188−6195. [NIE M L, RAO C Y, MO M G, et al. Study on the extraction of Guangxi hemp dietary fiber and its characteristics[J]. Journal of Food Safety and Quality,2020,11(17):6188−6195.

    NIE M L, RAO C Y, MO M G, et al. Study on the extraction of Guangxi hemp dietary fiber and its characteristics[J]. Journal of Food Safety and Quality, 2020, 11(17): 6188-6195.
    [12]
    饶川艳, 聂梦琳, 莫明规, 等. 广西巴马长寿人群饮食中7种膳食纤维成分及抗氧化活性分析[J]. 食品安全质量检测学报,2020,11(19):6990−6999. [RAO C Y, NIE M L, MO M G, et al. Determination of 7 dietary fiber components and antioxidant effects in diet of Guangxi Bama longevity population[J]. Journal of Food Safety and Quality,2020,11(19):6990−6999.

    RAO C Y, NIE M L, MO M G, et al. Determination of 7 dietary fiber components and antioxidant effects in diet of Guangxi Bama longevity population[J]. Journal of Food Safety and Quality, 2020, 11(19), 6990-6999.
    [13]
    国家卫生和计划生育委员会. GB 5009.3-2016 食品安全国家标准 食品中水分的测定[S]. 北京: 中国标准出版社, 2016: 1−2.

    National Health and Family Planning Commission. GB 5009.3-2016 National Food Safety Standard Determination of moisture in food[S]. Beijing: China Standards Press, 2016: 1−2.
    [14]
    国家卫生和计划生育委员会. GB 5009.4-2016 食品安全国家标准 食品中灰分的测定[S]. 北京: 中国标准出版社, 2016: 1−4.

    National Health and Family Planning Commission. GB 5009.4-2016 National Standard for Food Safety Determination of ash in food[S]. Beijing: China Standards Press, 2016: 1−4.
    [15]
    国家食品药品监督管理总局, 国家卫生和计划生育委员会. GB 5009.5-2016 食品安全国家标准 食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2016: 1−3.

    State Food and Drug Administration, State Health and Family Planning Commission. GB 5009.5-2016 National Food Safety Standard Determination of protein in food[S]. Beijing: China Standards Press, 2016: 1−3.
    [16]
    国家食品药品监督管理总局, 国家卫生和计划生育委员会. GB 5009.6-2016 食品安全国家标准食品中脂肪的测定[S]. 北京: 中国标准出版社, 2016: 1−5.

    State Food and Drug Administration, State Health and Family Planning Commission. GB 5009.6-2016 National Food Safety Standard Determination of fat in foods[S]. Beijing: China Standards Press, 2016: 1−5.
    [17]
    MA M M, MU T H, SUN H N, et al. Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.)[J]. Food Chemistry,2015,179:270−277. doi: 10.1016/j.foodchem.2015.01.136
    [18]
    CAPEK P, HRIBALOVA V, SVANDOVA E, et al. Characterization of immunomodulatory polysaccharides from Salvia officinalis L.[J]. International Journal of Biological Macromolecules,2003,33(1):113−119.
    [19]
    国家卫生和计划生育委员会. GB 5009.88-2014 食品安全国家标准 食品中膳食纤维的测定[S]. 北京: 中国标准出版社, 2014: 1−7.

    National Health and Family Planning Commission. GB 5009.88-2014 National Food Safety Standard Determination of dietary fiber in foods[S]. Beijing: China Standards Press, 2014: 1−7.
    [20]
    HE Y Y, LI W, ZHANG X Y, et al. Physicochemical, functional, and microstructural properties of modified insoluble dietary fiber extracted from rose pomace[J]. Journal of Food Science and Technology,2020,57(4):1421−1429. doi: 10.1007/s13197-019-04177-8
    [21]
    GHRIBI A M, SILA A, GAFSI I M, et al. Structural, functional, and ACE inhibitory properties of water-soluble polysaccharides from chickpea flours[J]. International Journal of Biological Macromolecules,2015,75:276−282. doi: 10.1016/j.ijbiomac.2015.01.037
    [22]
    WANG L, XU H G, YUAN F, et al. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking[J]. Food Chemistry,2015,185:90−98. doi: 10.1016/j.foodchem.2015.03.112
    [23]
    任庆, 孙波, 于敬鑫, 等. 白菜渣可溶性膳食纤维酸法提取工艺优化及理化性质测定[J]. 食品科学,2015,36(10):70−75. [REN Q, SUN B, YU J X, et al. Optimization of acid extraction and physicochemical properties of soluble dietary fiber from Chinese cabbage residue[J]. Food Science,2015,36(10):70−75. doi: 10.7506/spkx1002-6630-201510014

    REN Q, SUN B, YU J X, et al. Optimization of acid extraction and physicochemical properties of soluble dietary fiber from Chinese cabbage residue[J]. Food Science, 2015, 36(10): 70-75. doi: 10.7506/spkx1002-6630-201510014
    [24]
    李琦, 曾凡坤, 华蓉, 等. 响应面法优化超声辅助提取韭菜根不溶性膳食纤维[J]. 食品与发酵工业,2021,47(3):128−134. [LI Q, ZENG F K, HUA R, et al. Optimization of ultrasound-assisted extraction of insoluble dietary fiber from chive roots by response surface method[J]. Food and Fermentation Industries,2021,47(3):128−134.

    LI Q, ZENG F K, HUA R, et al. Optimization of ultrasound-assisted extraction of insoluble dietary fiber from chive roots by response surface method[J]. Food and Fermentation Industries, 2021, 47(3): 128 -134.
    [25]
    张荣, 任清, 罗宇. 小米可溶性膳食纤维提取及其理化性质分析[J]. 食品科学,2014,35(2):69−74. [ZHANG R, REN Q, LUO Y. Extraction of soluble dietary fiber from foxtail millet and analysis of its physical and chemical properties[J]. Food Science,2014,35(2):69−74. doi: 10.7506/spkx1002-6630-201402013

    ZHANG R, REN Q, LUO Y. Extraction of soluble dietary fiber from foxtail millet and analysis of its physical and chemical properties[J]. Food Science, 2014, 35(2): 69-74. doi: 10.7506/spkx1002-6630-201402013
    [26]
    马子晔, 何孟欣, 孙剑锋, 等. 超声波辅助提取马铃薯全粉加工副产物中膳食纤维[J]. 食品研究与开发,2020,41(22):79−85. [MA Z Y, HE M X, SUN J F, et al. Ultrasonic-assisted extraction of dietary fiber from by-products of whole potato processing[J]. Food Research and Development,2020,41(22):79−85.

    MA Z Y, HE M X, SUN J F, et al. Ultrasonic-assisted extraction of dietary fiber from by-products of whole potato processing[J]. Food Research and Development, 2020, 41(22): 79-85.
    [27]
    MA M M, MU T H. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin[J]. Food Chemistry,2016,194:237−246. doi: 10.1016/j.foodchem.2015.07.095
    [28]
    赖爱萍, 陆国权, 王 颖. 超声波辅助酶法制备甘薯渣膳食纤维工艺研究[J]. 中国粮油学报,2015,30(8):99−104. [LAI A P, LU G Q, WANG Y. Ultrasonic -assisted enzymatic extraction technology of dietary fiber from sweetpotato residue[J]. Journal of the Chinese Cereals and Oils Association,2015,30(8):99−104. doi: 10.3969/j.issn.1003-0174.2015.08.019

    LAI A P, LU G Q, WANG Y. Ultrasonic -assisted enzymatic extraction technology of dietary fiber from sweetpotato residue[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(8): 99-104. doi: 10.3969/j.issn.1003-0174.2015.08.019
    [29]
    张孟凡, 岳丽, 敬思群, 等. 超声辅助-酶解协同作用提取红枣渣膳食纤维及其促消化作用[J]. 食品工业科技,2019,40(7):205−212. [ZHANG M F, YUE L, JING S Q, et al. Extraction of dietary fiber from red jujube residue by ultrasonic-enzymatic hydrolysis synergistic action and its promoting digestion function[J]. Science and Technology of Food Industry,2019,40(7):205−212.

    ZHANG M F, YUE L, JING S Q, et al. Extraction of dietary fiber from red jujube residue by ultrasonic-enzymatic hydrolysis synergistic action and its promoting digestion function[J]. Science and Technology of Food Industry, 2019, 40(7): 205-212.
    [30]
    丁政宇, 张士凯, 何子杨, 等. 响应面优化黄精渣不溶性膳食纤维酶法提取工艺及其结构表征[J]. 食品工业科技,2021, 42(20): 157-163.

    DING Z Y, ZHANG S K, HE Z Y, et al. Response surface optimization enzymatic extraction and characterization of insoluble dietary fiber from polygonatum waste[J]. Science and Technology of Food Industry, 2021, 42(20): 157-163.
    [31]
    LOU Z X, WANG H X, WANG D X, et al. Preparation of inulin and phenols-rich dietary fibre powder from burdock root[J]. Carbohydrate Polymers,2009,78(4):666−671. doi: 10.1016/j.carbpol.2009.05.029
    [32]
    梁文康, 苏平, 魏丹. 复合酶法提取黄秋葵可溶性膳食纤维的工艺优化及其理化特性、结构表征[J]. 食品工业科技,2020,41(17):199−205. [LIANG W K, SU P, WEI D. Optimization techniques for the extraction of soluble dietary fiber from okra with complex enzymes and its physicochemical properties and structure characterization[J]. Science and Technology of Food Industry,2020,41(17):199−205.

    LIANG W K, SU P, WEI D. Optimization techniques for the extraction of soluble dietary fiber from okra with complex enzymes and its physicochemical properties and structure characterization[J]. Science and Technology of Food Industry, 2020, 41(17): 199-205.
    [33]
    ZHANG W M, ZENG G L, PAN Y G, et al. Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound-assisted alkaline extraction[J]. Carbohydrate Polymers,2017,172:102−112. doi: 10.1016/j.carbpol.2017.05.030
    [34]
    JACOMETTI G A, MELLO L R P F, NASCIMENTO P H A, et al. The physicochemical properties of fibrous residues from the agro industry[J]. LWT-Food Science and Technology,2015,62(1):138−143. doi: 10.1016/j.lwt.2015.01.044
    [35]
    吕明彧, 刘家宏, 陈彦君, 等. 多元复合抗性淀粉减肥功效评价[J]. 食品科技,2021,46(1):251−257. [LÜ M Y, LIU J H, CHEN Y J, et al. Evaluation of multi-element compound resistant starch for weight loss[J]. Food Science and Technology,2021,46(1):251−257.

    LYU M Y, LIU J H, CHEN Y J, et al. Evaluation of multi-element compound resistant starch for weight loss[J]. Food Science and Technology, 2021, 46(1), 251-257.
    [36]
    陈彦君, 刘家宏, 张 翔, 等. 多元复合抗性淀粉对高糖高脂模型小鼠代谢调节作用及机制[J]. 食品工业科技, 2021, 42(19): 357-362.

    CHEN Y J, LIU J H, ZHANG X, et al. Metabolic regulation and mechanism of multi-component resistant starch on high-sugar and high-fat model mice[J]. Science and Technology of Food Industry, 2021, 42(19): 357-362.
  • Cited by

    Periodical cited type(6)

    1. 郭利健. 茶多酚与表面活性剂的相互作用及其在食品工业中的应用. 安徽化工. 2025(01): 26-29 .
    2. 郝吉明. 基于淀粉作用的大米品质提升策略研究. 粮油与饲料科技. 2024(08): 225-227 .
    3. 郭硕,刘景圣,郑明珠. 热处理过程中食品组分与淀粉相互作用研究进展. 食品安全质量检测学报. 2023(01): 17-24 .
    4. 华玮,熊丽娜,张永鑫,孙鹏,岳龙,付鸿博. 草莓多酚提取工艺优化及抗氧化性分析. 果树资源学报. 2023(06): 17-22 .
    5. 李舒玥,吴昊怡,易阳,孙莹,彭凯迪,江雪玉. 多酚强化莲藕营养粉的制备与食用品质. 武汉轻工大学学报. 2023(05): 1-10 .
    6. 柳丝菁,孙红男,马梦梅,木泰华. 淀粉-多酚复合物制备及其消化特性研究进展. 食品安全质量检测学报. 2023(22): 152-161 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return