Citation: | SHI Fengcui, YU Xiaohan, HAN Kunchen, et al. Optimization of Extraction Process and Characteristics of Dietary Fiber Complex in Recipes of Longevity People in Guangxi[J]. Science and Technology of Food Industry, 2022, 43(14): 215−223. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100163. |
[1] |
蔡达. 广西长寿之乡老人饮食与代谢特征及其相关性研究[D]. 南宁: 广西大学, 2017.
CAI D. A correlation between diet and metabolic characteristics of healthy elderly people from longevous region in Guangxi province[D]. Nanning: Guangxi University, 2017.
|
[2] |
王芳. 广西巴马长寿老人肠道菌群及其与膳食纤维多糖饮食关联性研究[D]. 南宁: 广西大学, 2015.
WANG F. Chinese centenarians gut microbiota and its correlation with high-fiber diet[D]. Nanning: Guangxi University, 2015.
|
[3] |
宋奇, 艾连中, 鲁红岩, 等. 巴马长寿饮食模式在衰老小鼠模型中的抗氧化应激效果[J]. 食品科学,2018,39(19):147−153. [SONG Q, AI L Z, LU H Y, et al. Effect of Bama longevity dietary patterns on antioxidant stress in a mouse model of aging[J]. Food Science,2018,39(19):147−153. doi: 10.7506/spkx1002-6630-201819023
SONG Q, AI L Z, LU H Y, et al. Effect of Bama longevity dietary patterns on antioxidant stress in a mouse model of aging[J]. Food Science, 2018, 39(19): 147-153. doi: 10.7506/spkx1002-6630-201819023
|
[4] |
黄燕婷, 梅丽华, 潘海博, 等. 巴马长寿特征饮食模式对自然衰老小鼠的抗衰老效果[J]. 食品科学,2021,42(5):137−144. [HUANG Y T, MEI L H, PAN H B, et al. Anti-aging effect of Bama longevity characteristic dietary patterns in naturally aging mice[J]. Food Science,2021,42(5):137−144. doi: 10.7506/spkx1002-6630-20200229-328
HUANG Y T, MEI L H, PAN H B, et al. Anti-aging effect of Bama longevity characteristic dietary patterns in naturally aging mice[J]. Food Science, 2021, 42(5): 137-144. doi: 10.7506/spkx1002-6630-20200229-328
|
[5] |
VERSPREET J, DAMEN B, BROEKAERT W F, et al. A critical look at prebiotics within the dietary fiber concept[J]. Annual Review of Food Science and Technology,2016,7(1):167−190. doi: 10.1146/annurev-food-081315-032749
|
[6] |
YANG Y Y, MA S, WANG X X, et al. Modification and application of dietary fiber in foods[J]. Journal of Chemistry,2017,2017:1−8.
|
[7] |
SURYANTI V, KUSUMANINGSIH T, RUMINGTYAS Y S. Physicochemical properties of dietary fibers from artocarpus camansi fruit[J]. IOP Conference Series-Materials Science and Engineering, 2017, 193(1): 012012.
|
[8] |
千春录, 王兢业, 戴露婷, 等. 水芹膳食纤维提取工艺优化及其特性[J]. 食品工业科技,2017,38(22):119−124. [QIAN C L, WANG J Y, DAI L T, et al. Optimization of extraction technology of dietary fiber from Oenanthe javanica and its character[J]. Science and Technology of Food Industry,2017,38(22):119−124.
QIAN C L, WANG J Y, DAI L T, et al. Optimization of extraction technology of dietary fiber from Oenanthe javanica and its character[J]. Science and Technology of Food Industry, 2017, 38(22): 119-124.
|
[9] |
JIA F J, YANG S F, MA Y Y, et al. Extraction optimization and constipation-relieving activity of dietary fiber from Auricularia polytricha[J]. Food Bioscience, 2020, 33.
|
[10] |
KUREK M A, KARP S, WYRWISZ J, et al. Physicochemical properties of dietary fibers extracted from gluten-free sources: Quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and millet (Panicum miliaceum)[J]. Food Hydrocolloids,2018,85:321−330. doi: 10.1016/j.foodhyd.2018.07.021
|
[11] |
聂梦琳, 饶川艳, 莫明规, 等. 广西火麻膳食纤维提取及其特性研究[J]. 食品安全质量检测学报,2020,11(17):6188−6195. [NIE M L, RAO C Y, MO M G, et al. Study on the extraction of Guangxi hemp dietary fiber and its characteristics[J]. Journal of Food Safety and Quality,2020,11(17):6188−6195.
NIE M L, RAO C Y, MO M G, et al. Study on the extraction of Guangxi hemp dietary fiber and its characteristics[J]. Journal of Food Safety and Quality, 2020, 11(17): 6188-6195.
|
[12] |
饶川艳, 聂梦琳, 莫明规, 等. 广西巴马长寿人群饮食中7种膳食纤维成分及抗氧化活性分析[J]. 食品安全质量检测学报,2020,11(19):6990−6999. [RAO C Y, NIE M L, MO M G, et al. Determination of 7 dietary fiber components and antioxidant effects in diet of Guangxi Bama longevity population[J]. Journal of Food Safety and Quality,2020,11(19):6990−6999.
RAO C Y, NIE M L, MO M G, et al. Determination of 7 dietary fiber components and antioxidant effects in diet of Guangxi Bama longevity population[J]. Journal of Food Safety and Quality, 2020, 11(19), 6990-6999.
|
[13] |
国家卫生和计划生育委员会. GB 5009.3-2016 食品安全国家标准 食品中水分的测定[S]. 北京: 中国标准出版社, 2016: 1−2.
National Health and Family Planning Commission. GB 5009.3-2016 National Food Safety Standard Determination of moisture in food[S]. Beijing: China Standards Press, 2016: 1−2.
|
[14] |
国家卫生和计划生育委员会. GB 5009.4-2016 食品安全国家标准 食品中灰分的测定[S]. 北京: 中国标准出版社, 2016: 1−4.
National Health and Family Planning Commission. GB 5009.4-2016 National Standard for Food Safety Determination of ash in food[S]. Beijing: China Standards Press, 2016: 1−4.
|
[15] |
国家食品药品监督管理总局, 国家卫生和计划生育委员会. GB 5009.5-2016 食品安全国家标准 食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2016: 1−3.
State Food and Drug Administration, State Health and Family Planning Commission. GB 5009.5-2016 National Food Safety Standard Determination of protein in food[S]. Beijing: China Standards Press, 2016: 1−3.
|
[16] |
国家食品药品监督管理总局, 国家卫生和计划生育委员会. GB 5009.6-2016 食品安全国家标准食品中脂肪的测定[S]. 北京: 中国标准出版社, 2016: 1−5.
State Food and Drug Administration, State Health and Family Planning Commission. GB 5009.6-2016 National Food Safety Standard Determination of fat in foods[S]. Beijing: China Standards Press, 2016: 1−5.
|
[17] |
MA M M, MU T H, SUN H N, et al. Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.)[J]. Food Chemistry,2015,179:270−277. doi: 10.1016/j.foodchem.2015.01.136
|
[18] |
CAPEK P, HRIBALOVA V, SVANDOVA E, et al. Characterization of immunomodulatory polysaccharides from Salvia officinalis L.[J]. International Journal of Biological Macromolecules,2003,33(1):113−119.
|
[19] |
国家卫生和计划生育委员会. GB 5009.88-2014 食品安全国家标准 食品中膳食纤维的测定[S]. 北京: 中国标准出版社, 2014: 1−7.
National Health and Family Planning Commission. GB 5009.88-2014 National Food Safety Standard Determination of dietary fiber in foods[S]. Beijing: China Standards Press, 2014: 1−7.
|
[20] |
HE Y Y, LI W, ZHANG X Y, et al. Physicochemical, functional, and microstructural properties of modified insoluble dietary fiber extracted from rose pomace[J]. Journal of Food Science and Technology,2020,57(4):1421−1429. doi: 10.1007/s13197-019-04177-8
|
[21] |
GHRIBI A M, SILA A, GAFSI I M, et al. Structural, functional, and ACE inhibitory properties of water-soluble polysaccharides from chickpea flours[J]. International Journal of Biological Macromolecules,2015,75:276−282. doi: 10.1016/j.ijbiomac.2015.01.037
|
[22] |
WANG L, XU H G, YUAN F, et al. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking[J]. Food Chemistry,2015,185:90−98. doi: 10.1016/j.foodchem.2015.03.112
|
[23] |
任庆, 孙波, 于敬鑫, 等. 白菜渣可溶性膳食纤维酸法提取工艺优化及理化性质测定[J]. 食品科学,2015,36(10):70−75. [REN Q, SUN B, YU J X, et al. Optimization of acid extraction and physicochemical properties of soluble dietary fiber from Chinese cabbage residue[J]. Food Science,2015,36(10):70−75. doi: 10.7506/spkx1002-6630-201510014
REN Q, SUN B, YU J X, et al. Optimization of acid extraction and physicochemical properties of soluble dietary fiber from Chinese cabbage residue[J]. Food Science, 2015, 36(10): 70-75. doi: 10.7506/spkx1002-6630-201510014
|
[24] |
李琦, 曾凡坤, 华蓉, 等. 响应面法优化超声辅助提取韭菜根不溶性膳食纤维[J]. 食品与发酵工业,2021,47(3):128−134. [LI Q, ZENG F K, HUA R, et al. Optimization of ultrasound-assisted extraction of insoluble dietary fiber from chive roots by response surface method[J]. Food and Fermentation Industries,2021,47(3):128−134.
LI Q, ZENG F K, HUA R, et al. Optimization of ultrasound-assisted extraction of insoluble dietary fiber from chive roots by response surface method[J]. Food and Fermentation Industries, 2021, 47(3): 128 -134.
|
[25] |
张荣, 任清, 罗宇. 小米可溶性膳食纤维提取及其理化性质分析[J]. 食品科学,2014,35(2):69−74. [ZHANG R, REN Q, LUO Y. Extraction of soluble dietary fiber from foxtail millet and analysis of its physical and chemical properties[J]. Food Science,2014,35(2):69−74. doi: 10.7506/spkx1002-6630-201402013
ZHANG R, REN Q, LUO Y. Extraction of soluble dietary fiber from foxtail millet and analysis of its physical and chemical properties[J]. Food Science, 2014, 35(2): 69-74. doi: 10.7506/spkx1002-6630-201402013
|
[26] |
马子晔, 何孟欣, 孙剑锋, 等. 超声波辅助提取马铃薯全粉加工副产物中膳食纤维[J]. 食品研究与开发,2020,41(22):79−85. [MA Z Y, HE M X, SUN J F, et al. Ultrasonic-assisted extraction of dietary fiber from by-products of whole potato processing[J]. Food Research and Development,2020,41(22):79−85.
MA Z Y, HE M X, SUN J F, et al. Ultrasonic-assisted extraction of dietary fiber from by-products of whole potato processing[J]. Food Research and Development, 2020, 41(22): 79-85.
|
[27] |
MA M M, MU T H. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin[J]. Food Chemistry,2016,194:237−246. doi: 10.1016/j.foodchem.2015.07.095
|
[28] |
赖爱萍, 陆国权, 王 颖. 超声波辅助酶法制备甘薯渣膳食纤维工艺研究[J]. 中国粮油学报,2015,30(8):99−104. [LAI A P, LU G Q, WANG Y. Ultrasonic -assisted enzymatic extraction technology of dietary fiber from sweetpotato residue[J]. Journal of the Chinese Cereals and Oils Association,2015,30(8):99−104. doi: 10.3969/j.issn.1003-0174.2015.08.019
LAI A P, LU G Q, WANG Y. Ultrasonic -assisted enzymatic extraction technology of dietary fiber from sweetpotato residue[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(8): 99-104. doi: 10.3969/j.issn.1003-0174.2015.08.019
|
[29] |
张孟凡, 岳丽, 敬思群, 等. 超声辅助-酶解协同作用提取红枣渣膳食纤维及其促消化作用[J]. 食品工业科技,2019,40(7):205−212. [ZHANG M F, YUE L, JING S Q, et al. Extraction of dietary fiber from red jujube residue by ultrasonic-enzymatic hydrolysis synergistic action and its promoting digestion function[J]. Science and Technology of Food Industry,2019,40(7):205−212.
ZHANG M F, YUE L, JING S Q, et al. Extraction of dietary fiber from red jujube residue by ultrasonic-enzymatic hydrolysis synergistic action and its promoting digestion function[J]. Science and Technology of Food Industry, 2019, 40(7): 205-212.
|
[30] |
丁政宇, 张士凯, 何子杨, 等. 响应面优化黄精渣不溶性膳食纤维酶法提取工艺及其结构表征[J]. 食品工业科技,2021, 42(20): 157-163.
DING Z Y, ZHANG S K, HE Z Y, et al. Response surface optimization enzymatic extraction and characterization of insoluble dietary fiber from polygonatum waste[J]. Science and Technology of Food Industry, 2021, 42(20): 157-163.
|
[31] |
LOU Z X, WANG H X, WANG D X, et al. Preparation of inulin and phenols-rich dietary fibre powder from burdock root[J]. Carbohydrate Polymers,2009,78(4):666−671. doi: 10.1016/j.carbpol.2009.05.029
|
[32] |
梁文康, 苏平, 魏丹. 复合酶法提取黄秋葵可溶性膳食纤维的工艺优化及其理化特性、结构表征[J]. 食品工业科技,2020,41(17):199−205. [LIANG W K, SU P, WEI D. Optimization techniques for the extraction of soluble dietary fiber from okra with complex enzymes and its physicochemical properties and structure characterization[J]. Science and Technology of Food Industry,2020,41(17):199−205.
LIANG W K, SU P, WEI D. Optimization techniques for the extraction of soluble dietary fiber from okra with complex enzymes and its physicochemical properties and structure characterization[J]. Science and Technology of Food Industry, 2020, 41(17): 199-205.
|
[33] |
ZHANG W M, ZENG G L, PAN Y G, et al. Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound-assisted alkaline extraction[J]. Carbohydrate Polymers,2017,172:102−112. doi: 10.1016/j.carbpol.2017.05.030
|
[34] |
JACOMETTI G A, MELLO L R P F, NASCIMENTO P H A, et al. The physicochemical properties of fibrous residues from the agro industry[J]. LWT-Food Science and Technology,2015,62(1):138−143. doi: 10.1016/j.lwt.2015.01.044
|
[35] |
吕明彧, 刘家宏, 陈彦君, 等. 多元复合抗性淀粉减肥功效评价[J]. 食品科技,2021,46(1):251−257. [LÜ M Y, LIU J H, CHEN Y J, et al. Evaluation of multi-element compound resistant starch for weight loss[J]. Food Science and Technology,2021,46(1):251−257.
LYU M Y, LIU J H, CHEN Y J, et al. Evaluation of multi-element compound resistant starch for weight loss[J]. Food Science and Technology, 2021, 46(1), 251-257.
|
[36] |
陈彦君, 刘家宏, 张 翔, 等. 多元复合抗性淀粉对高糖高脂模型小鼠代谢调节作用及机制[J]. 食品工业科技, 2021, 42(19): 357-362.
CHEN Y J, LIU J H, ZHANG X, et al. Metabolic regulation and mechanism of multi-component resistant starch on high-sugar and high-fat model mice[J]. Science and Technology of Food Industry, 2021, 42(19): 357-362.
|