MENG Yuanyuan, LIU Haiquan, PAN Yingjie, et al. Mechanism of Photodynamic Inactivation and Its Advantages and Disadvantages in Food Applications[J]. Science and Technology of Food Industry, 2022, 43(22): 414−421. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100149.
Citation: MENG Yuanyuan, LIU Haiquan, PAN Yingjie, et al. Mechanism of Photodynamic Inactivation and Its Advantages and Disadvantages in Food Applications[J]. Science and Technology of Food Industry, 2022, 43(22): 414−421. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100149.

Mechanism of Photodynamic Inactivation and Its Advantages and Disadvantages in Food Applications

More Information
  • Received Date: October 17, 2021
  • Available Online: September 15, 2022
  • Hazardous microorganisms are an important factor for causing food quality and safety problems. Antibiotics effectively inhibit bacteria, and the resistance of microorganisms prevents them from being effectively controlled, which not only aggravate the food safety risks, but also cause serious economic losses. Hence, there is an urgent need to develop other alternative sterilization technologies. Photodynamic inactivation uses light to stimulate photosensitizer, which can produce reactive oxygen species. The morphological structure, cell membrane, nucleic acid and protein of pathogenic bacteria are destroyed by reactive oxygen species, leading to the death of bacteria. This mechanism triggers a variety of death mechanisms that bacteria are difficult to develop tolerance. Photodynamic inactivation achieves a good bactericidal effect. However, this sterilization technology pays less attention to the influence of food ingredients and quality, which limits its promotion and application in the food field. This review summarizes the mechanism and influencing factors of photodynamic inactivation. The application and research progress of photodynamic inactivation in the food industry are introduced, and new insights on the advantages and disadvantages of photodynamic inactivation in food applications are put forward, which aims to provide reference for the application of photodynamic inactivation in food industrial.
  • [1]
    VINAGREIRO C S, ZANGIROLAMI A, FÁBIO A S, et al. Antibacterial photodynamic inactivation of antibiotic-resistant bacteria and biofilms with nanomolar photosensitizer concentrations[J]. ACS Infectious Diseases,2020,6(6):1517−1526. doi: 10.1021/acsinfecdis.9b00379
    [2]
    PENHA C B, BONIN E, DA SILVA A F, et al. Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin[J]. LWT-Food Science and Technology,2017,76:198−202. doi: 10.1016/j.lwt.2016.07.037
    [3]
    SULTANBAWA, YASMINA, MEREDDY, et al. A novel photosensitization treatment for the inactivation of fungal spores and cells mediated by curcumin[J]. Journal of Photochemistry & Photobiology B-Biology,2017,173:301−306.
    [4]
    KINGSLEY D H, PEREZ R E, BOYD G, et al. Evaluation of 405 nm monochromatic light for inactivation of Tulane virus on blueberry surfaces[J]. Journal of Applied Microbiology,2018,124(4):1017−1022. doi: 10.1111/jam.13638
    [5]
    KORNEEV D, KURSKAYA O, SHARSHOV K, et al. Ultrastructural aspects of photodynamic inactivation of highly pathogenic avian H5N8 influenza virus[J]. Viruses,2019,11(10):955. doi: 10.3390/v11100955
    [6]
    GHATE V S, ZHOU W, YUK H G. Perspectives and trends in the application of photodynamic inactivation for microbiological food safety[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(2):402−424. doi: 10.1111/1541-4337.12418
    [7]
    ZHU X Q, ZHEN D S, LI C Y, et al. One-step self-assembly of ZnPc/KMnF3: Yb, Er upconversion photodynamic therapy system for antibacterial applications[J]. Nano,2020,15(6):2050075. doi: 10.1142/S1793292020500757
    [8]
    ZHANG Z H, WANG L H, ZENG X N, et al. Non-thermal technologies and its current and future application in the food industry: A review[J]. International Journal of Food Science & Technology,2019,54(1):1−13.
    [9]
    CHEN B W, HUANG J M, LI H H, et al. Eradication of planktonic Vibrio parahaemolyticus and its sessile biofilm by curcumin-mediated photodynamic inactivation[J]. Food Control,2020,113:107181. doi: 10.1016/j.foodcont.2020.107181
    [10]
    GULÍAS S, MCKENZIE G, BAYÓ M, et al. Effective photodynamic inactivation of 26Escherichia coli strains with different antibiotic susceptibility profiles: A planktonic and biofilm study[J]. Antibiotics,2020,9(3):98. doi: 10.3390/antibiotics9030098
    [11]
    DHINGRA S, RAHMAN A A, PEILE E, et al. Microbial resistance movements: An overview of global public health threats posed by antimicrobial resistance, and how best to counter[J]. Frontiers in Public Health,2020,8:535668. doi: 10.3389/fpubh.2020.535668
    [12]
    BENJAMIN PIÑA, JOSEP M, BAYONA J M, et al. On the contribution of reclaimed wastewater irrigation to the potential exposure of humans to antibiotics, antibiotic resistant bacteria and antibiotic resistance genes-NEREUS COST Action ES1403 position paper[J]. Journal of Environmental Chemical Engineering,2020,8(1):2213−3437.
    [13]
    AIYAR A, PINGALI P. Pandemics and food systems-towards a proactive food safety approach to disease prevention & management[J]. Food Security,2020(7):749−756.
    [14]
    MATAMOROSRECIO A, FRANCOGONZALEZ J F, FORGIONE R E, et al. Understanding the antibacterial resistance: computational explorations in bacterial membranes[J]. ACS Omega,2021,6(9):6041−6054. doi: 10.1021/acsomega.0c05590
    [15]
    李昕, 曾洁, 王岱, 等. 细菌耐药耐受性机制的最新研究进展[J]. 中国抗生素杂志,2020,45(2):113−121. [LI X, ZENG J, WANG D, et al. The latest research progress on the mechanism of bacterial resistance to drug resistance[J]. Chinese Journal of Antibiotics,2020,45(2):113−121. doi: 10.3969/j.issn.1001-8689.2020.02.003
    [16]
    赵占娟, 李世杰, 徐泽华, 等. 光动力治疗耐药细菌的研究进展[J]. 河北大学学报:自然科学版,2015,35(6):10. [ZHAO Z J, LI S J, XU Z H, et al. Research progress in photodynamic therapy of drug-resistant bacteria[J]. Journal of Hebei University: Natural Science Edition,2015,35(6):10.
    [17]
    KASHEF N, HAMBLIN M R. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation?[J]. Drug Resist Updates,2017,31:31−42. doi: 10.1016/j.drup.2017.07.003
    [18]
    HAMBLIN, MICHAEL R. Antimicrobial photodynamic inactivation: A bright new technique to kill resistant microbes[J]. Current Opinion in Microbiology,2016,33:67−73. doi: 10.1016/j.mib.2016.06.008
    [19]
    萨仁高娃, 胡文忠, 冯可, 等. 植物精油及其成分对病原微生物抗菌机理的研究进展[J]. 食品科学,2020,41(11):285−294. [SARENGAOWA, HU W Z, FENG K, et al. Antimicrobial mechanisms of essential oils and their components on pathogenic bacteria: A review[J]. Food Science,2020,41(11):285−294. doi: 10.7506/spkx1002-6630-20190603-018
    [20]
    HUANG J M, CHEN B W, LI H H, et al. Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes[J]. Food Control,2020,108:106886. doi: 10.1016/j.foodcont.2019.106886
    [21]
    HU JIAMIAO, LIN SHAOLING, Tan B K, et al. Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA[J]. Food Research International,2018,111:265−271. doi: 10.1016/j.foodres.2018.05.042
    [22]
    ALEX S, ANABELA B, CAMILA F, et al. Antimicrobial photodynamic inactivation mediated by rose bengal and erythrosine is effective in the control of food-related bacteria in planktonic and biofilm states[J]. Molecules,2018,23(9):2288. doi: 10.3390/molecules23092288
    [23]
    GONG C, LI Y J, GAO R H, et al. Inactivation of specific spoilage organism (Pseudomonas) of sturgeon by curcumin-mediated photodynamic inactivation[J]. Photodiagnosis and Photodynamic Therapy,2020,31:101827. doi: 10.1016/j.pdpdt.2020.101827
    [24]
    GAO Y, WE J, LI Z J, et al. Curcumin-mediated photodynamic inactivation (PDI) against DH5α contaminated in oysters and cellular toxicological evaluation of PDI-treated oysters[J]. Photodiagnosis and Photodynamic Therapy,2019,26(6):244−251.
    [25]
    COSSU M, LEDDA L, COSSU A. Emerging trends in the photodynamic inactivation (PDI) applied to the food decontamination[J]. Food Research International,2021,144:110358. doi: 10.1016/j.foodres.2021.110358
    [26]
    PRASAD A, DU L, ZUBAIR M, et al. Applications of light-emitting diodes (LEDs) in food processing and water treatment[J]. Food Engineering Reviews,2020(5):268−289.
    [27]
    梁富强, 沈毅, 顾瑛, 等. 光动力治疗光源的研究新进展[J]. 激光生物学报,2019,28(2):97−108. [LIANG F Q, SHEN Y, GU Y, et al. New progress in the research of photodynamic therapy light sources[J]. Chinese Journal of Laser Biology,2019,28(2):97−108. doi: 10.3969/j.issn.1007-7146.2019.02.001
    [28]
    赵家晴, 郭姝婧, 李业贤, 等. 激光及光动力疗法在甲真菌病治疗中的应用进展[J]. 山东医药,2021,61(12):98−102. [ZHAO J Q, GUO S J, LI Y X, et al. The application progress of laser and photodynamic therapy in the treatment of onychomycosis[J]. Shandong Medicine,2021,61(12):98−102. doi: 10.3969/j.issn.1002-266X.2021.12.025
    [29]
    李婵婵, 宋继权, 吴剑波, 等. 鲜红斑痣的激光治疗及评价方法的研究进展[J]. 中国医疗美容,2020,10(11):1−5. [LI C C, SONG J Q, WU J B, et al. Research progress in laser treatment and evaluation methods of port wine stains[J]. China Medical Cosmetology,2020,10(11):1−5. doi: 10.19593/j.issn.2095-0721.2020.11.001
    [30]
    OGONOWSKA P, ENG A W, PIERAIISKI M K, et al. Application and characterization of light-emitting diodes for photodynamic inactivation of bacteria[J]. Lighting Research & Technology,2019,51(4):612−624.
    [31]
    张清阳, 王少雷, 苏美丞, 等. 牛奶光氧化研究进展[J]. 中国食物与营养,2020,26(12):19−23. [ZHANG Q Y, WANG S L, SU M H, et al. Research progress in milk photooxidation[J]. Chinese Food and Nutrition,2020,26(12):19−23. doi: 10.3969/j.issn.1006-9577.2020.12.005
    [32]
    林以琳, 邱建清, 李世洋, 等. 核黄素介导的光动力技术的研究进展[J]. 食品工业科技,2020,41(6):332−337. [LIN Y L, QIU J Q, LI S Y, et al. Research progress of riboflavin-mediated photodynamic technology[J]. Science and Technology of Food Industry,2020,41(6):332−337. doi: 10.13386/j.issn1002-0306.2020.06.055
    [33]
    张雨宸, 谢晶. LED光照灭菌技术在果蔬保鲜加工中的应用及其研究[J]. 食品与机械,2019,35(8):155−160. [ZHANG Y C, XIE J. The application and research of LED light sterilization technology in the preservation and processing of fruits and vegetables[J]. Food and Machinery,2019,35(8):155−160. doi: 10.13652/j.issn.1003-5788.2019.08.029
    [34]
    张佳玮, 马志远, 赵传壮, 等. 卟啉衍生物及其高分子材料[J]. 高分子学报,2018(7):864−877. [ZHANG J W, MA Z Y, ZHAO C Z, et al. Porphyrin derivatives and their polymer materials[J]. Acta Polymerica Sinica,2018(7):864−877. doi: 10.11777/j.issn1000-3304.2018.18023
    [35]
    LI X S, LEE S, YOON J. Supramolecular photosensitizers rejuvenate photodynamic therapy[J]. Chemical Society Reviews,2018,47(4):1174−1188. doi: 10.1039/C7CS00594F
    [36]
    NYAMU S N, LUCY O, ERIC M, et al. Antimicrobial photodynamic activity of phthalocyanine derivatives[J]. Advances in Chemistry,2018(3):1−8.
    [37]
    LIU Q, WACKENHUT F, HAULER O, et al. Hypericin: Single molecule spectroscopy of an active natural drug[J]. The journal of physical chemistry[J]. Food Science,2020,124(12):2497−2504.
    [38]
    DAMYEH M S, MEREDDY R, NETZEL M E, et al. An insight into curcumin-based photosensitization as a promising and green food preservation technology[J]. Comprehensive Reviews in Food Science and Food Safety,2020:1−33.
    [39]
    DURKEE H, ARBOLEDA A, AGUILAR M C, et al. Rose bengal photodynamic antimicrobial therapy to inhibit Pseudomonas aeruginosa keratitis isolates[J]. Lasers in Medical Science,2020,35(4):861−866. doi: 10.1007/s10103-019-02871-9
    [40]
    FEKRIRAD Z, DARABPOUR E, KASHEF N. Eradication of Acinetobacter baumannii planktonic and biofilm cells through erythrosine-mediated photodynamic inactivation augmented by acetic acid and chitosan[J]. Current Microbiology,2021:1−8.
    [41]
    OTIENO W, LIU C, DENG H, et al. Hypocrellin B-mediated photodynamic inactivation of gram-positive antibiotic-resistant bacteria: An in vitro study[J]. Photobiomodulation Photomedicine and Laser Surgery,2019,38(1):36−42.
    [42]
    HASENLEITNER M, PLAETZER K. In the right light: Photodynamic inactivation of microorganisms using a LED-based illumination device tailored for the antimicrobial application[J]. Antibiotics,2020,9(1):13.
    [43]
    陈勇, 李婉婉, 周江蛟, 等. 光动力疗法分子机制研究进展[J]. 中南大学学报(医学版),2014,39(1):102−108. [CHEN Y, LI W W, ZHOU J J, et al. Molecular mechanism of photodynamic therapy[J]. Journal of Central South University (Medical Science),2014,39(1):102−108.
    [44]
    QUIROGA E D, CORDERO P, MORA S J, et al. Mechanistic aspects in the photodynamic inactivation of Candida albicans sensitized by a dimethylaminopropoxy porphyrin and its equivalent with cationic intrinsic charges[J]. Photodiagnosis and Photodynamic Therapy,2020,31:101877. doi: 10.1016/j.pdpdt.2020.101877
    [45]
    FAN Y T, ZHOU T J, CUI P F, et al. Modulation of intracellular oxygen pressure by dual-drug nanoparticles to enhance photodynamic therapy[J]. Advanced Functional Materials,2019,29(10):1806708.1−1806708.12.
    [46]
    LI Z Z, WANG D, XU M S, et al. Fluorine-containing graphene quantum dots with a high singlet oxygen generation applied for photodynamic therapy[J]. Journal of materials chemistry. B,2020,8(13):2598−2606. doi: 10.1039/C9TB02529D
    [47]
    SRIMAGAL A, RAMESH T, SAHU J K. Effect of light emitting diode treatment on inactivation of Escherichia coli in milk[J]. LWT-Food Science and Technology,2016,71:378−385. doi: 10.1016/j.lwt.2016.04.028
    [48]
    CORRÊA TQ, BLANCO K C, GARCIA R B, et al. Effects of ultraviolet light and curcumin-mediated photodynamic inactivation on microbiological food safety: A study in meat and fruit[J]. Photodiagnosis and Photodynamic Therapy,2020,30:101678. doi: 10.1016/j.pdpdt.2020.101678
    [49]
    DUSE L, BAGHDAN E, PINNAPIREDDY S R, et al. Preparation and characterization of curcumin loaded chitosan nanoparticles for photodynamic therapy[J]. Physica Status Solidi (A),2018,215(15):17007709.
    [50]
    周阿容, 陈妮, 郑宝东, 等. 姜黄素介导的光动力技术对真空包装鲜莲胀袋控制效果的研究[J]. 食品科技,2019,44(6):45−50. [ZHOU A R, CHEN N, ZHENG B D, et al. Study on the effect of curcumin-mediated photodynamic technology on the control effect of vacuum packaging fresh lotus bag expansion[J]. Food Science and Technology,2019,44(6):45−50. doi: 10.13684/j.cnki.spkj.2019.06.008
    [51]
    藏磊, 马纪兵, 韩玲, 等. 活性氧对宰后牦牛肉成熟过程中腺苷一磷酸活化蛋白激酶通路、糖酵解及肉品质的影响[J]. 食品与发酵工业,2020,46(12):44−50. [ZANG L, MA J B, HAN L, et al. Effects of reactive oxygen species on adenosine monophosphate-activated protein kinase pathway, glycolysis and meat quality during the maturation of yak meat after slaughter[J]. Food and Fermentation Industry,2020,46(12):44−50. doi: 10.13995/j.cnki.11-1802/ts.022584
    [52]
    LIN Y L, HU J M, LI S Y, et al. Curcumin-based photodynamic sterilization for preservation of fresh-cut Hami melon[J]. Molecules,2019,24(13):2374. doi: 10.3390/molecules24132374
    [53]
    LUKSIENE Z, BROVKO L. Antibacterial photosensitization-based treatment for food safety[J]. Food Engineering Reviews,2013,5(4):185−199. doi: 10.1007/s12393-013-9070-7
    [54]
    TORTIK N, SPAETH A, PLAETZER K. Photodynamic decontamination of foodstuff from Staphylococcus aureus based on novel formulations of curcumin[J]. Photochemical & Photobiological Sciences,2014,13(10):1402−1409.
    [55]
    于金珅, 张芳. 姜黄素介导的光动力技术对鲜切马铃薯的杀菌效果[J]. 食品工业科技,2021,42(4):259−263,270. [YU JS, ZHANG F. The bactericidal effect of curcumin-mediated photodynamic technology on fresh-cut potatoes[J]. Food Industry Science and Technology,2021,42(4):259−263,270. doi: 10.13386/j.issn1002-0306.2020060050
    [56]
    CHO G L, HA J W. ERYTHROSINE B (Red D ye No. 3): A potential photosensitizer for the photodynamic inactivation of foodborne pathogens in tomato juice[J]. Journal of Food Safety,2020,40(4):e12813.
    [57]
    PASKEVICIUTE E, ZUDYTE B, LUKSIENE Z. Towards better microbial safety of fresh produce: Chlorophyllin-based photosensitization for microbial control of foodborne pathogens on cherry tomatoes[J]. Journal of Photochemistry & Photobiology B Biology Official Journal of the European Society for Photobiology,2018:130−136.
    [58]
    CHEN B W, HUANG J M, LIU Y, et al. Effects of the curcumin-mediated photodynamic inactivation on the quality of cooked oysters with Vibrio parahaemolyticus during storage at different temperature[J]. International Journal of Food Microbiology,2021,345:109152. doi: 10.1016/j.ijfoodmicro.2021.109152
    [59]
    LI H H, TAN L J, CHEN B W, et al. Antibacterial potency of riboflavin-mediated photodynamic inactivation against Salmonella and its influences on tuna quality[J]. LWT-Food Science and Technology,2021,146:111462. doi: 10.1016/j.lwt.2021.111462
    [60]
    HUANG J M, CHEN B W, ZENG Q H, et al. Application of the curcumin-mediated photodynamic inactivation for preserving the storage quality of salmon contaminated with L. monocytogenes[J]. Food Chemistry,2021,359:129974. doi: 10.1016/j.foodchem.2021.129974
    [61]
    GALSTYAN A, DOBRINDT U. Determining and unravelling origins of reduced photoinactivation efficacy of bacteria in milk[J]. Journal of Photochemistry and Photobiology B-Biology,2019,197:111554. doi: 10.1016/j.jphotobiol.2019.111554
    [62]
    林少玲, 黄晨楹, 朱子瑶, 等. 非热力光动力灭菌技术在食品安全中的研究进展[J]. 中国食品学报,2018,18(7):323−331. [LIN S L, HUANG C Y, ZHU Z Y, et al. Research progress of non-thermal photodynamic sterilization technology in food safety[J]. Chinese Journal of Food Science,2018,18(7):323−331. doi: 10.16429/j.1009-7848.2018.07.039
    [63]
    郑宝东, 林少玲, 曾绍校, 等. 光动力技术研究进展及其在食品工业中的应用前景[J]. 食品与生物技术学报,2020,39(5):6−15. [ZHENG B D, LIN S L, ZENG S X, et al. Research progress of photodynamic technology and its application prospects in food industry[J]. Journal of Food and Biotechnology,2020,39(5):6−15. doi: 10.3969/j.issn.1673-1689.2020.05.002
    [64]
    SU L Y, HUANG J M, LI H H, et al. Chitosan-riboflavin composite film based on photodynamic inactivation technology for antibacterial food packaging[J]. International Journal of Biological Macromolecules,2021,172:231−240. doi: 10.1016/j.ijbiomac.2021.01.056
  • Cited by

    Periodical cited type(5)

    1. 张瑞娟,苏艳群,夏菲,刘金刚,肖贵华,孙德文,杨小博,黄举. 不同种类研磨淀粉用于纸质食品包装的防油性能研究. 中国造纸. 2025(01): 62-68+84 .
    2. 李晶晶,张甜甜,佟岳,刘培玲. 高静压协同酸水解促淀粉颗粒纳米晶体化. 中国食品学报. 2024(12): 57-68 .
    3. 张芮娟. 固体制剂制药工艺及质量控制研究. 粘接. 2023(04): 149-152 .
    4. 高琦,张首央,唐子程,彭雪,王宁,薛友林. 蛋白质纳米颗粒的制备及其在食品领域的应用研究进展. 食品工业科技. 2023(11): 30-37 . 本站查看
    5. 段智颖,王申宛,艾斌凌,郑丽丽,郑晓燕,杨旸,校导,杨劲松,盛占武. 表没食子儿茶素没食子酸酯-香蕉脱支淀粉纳米颗粒的绿色制备及其性质. 食品科学. 2023(12): 74-83 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (422) PDF downloads (60) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return