Citation: | MENG Yuanyuan, LIU Haiquan, PAN Yingjie, et al. Mechanism of Photodynamic Inactivation and Its Advantages and Disadvantages in Food Applications[J]. Science and Technology of Food Industry, 2022, 43(22): 414−421. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100149. |
[1] |
VINAGREIRO C S, ZANGIROLAMI A, FÁBIO A S, et al. Antibacterial photodynamic inactivation of antibiotic-resistant bacteria and biofilms with nanomolar photosensitizer concentrations[J]. ACS Infectious Diseases,2020,6(6):1517−1526. doi: 10.1021/acsinfecdis.9b00379
|
[2] |
PENHA C B, BONIN E, DA SILVA A F, et al. Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin[J]. LWT-Food Science and Technology,2017,76:198−202. doi: 10.1016/j.lwt.2016.07.037
|
[3] |
SULTANBAWA, YASMINA, MEREDDY, et al. A novel photosensitization treatment for the inactivation of fungal spores and cells mediated by curcumin[J]. Journal of Photochemistry & Photobiology B-Biology,2017,173:301−306.
|
[4] |
KINGSLEY D H, PEREZ R E, BOYD G, et al. Evaluation of 405 nm monochromatic light for inactivation of Tulane virus on blueberry surfaces[J]. Journal of Applied Microbiology,2018,124(4):1017−1022. doi: 10.1111/jam.13638
|
[5] |
KORNEEV D, KURSKAYA O, SHARSHOV K, et al. Ultrastructural aspects of photodynamic inactivation of highly pathogenic avian H5N8 influenza virus[J]. Viruses,2019,11(10):955. doi: 10.3390/v11100955
|
[6] |
GHATE V S, ZHOU W, YUK H G. Perspectives and trends in the application of photodynamic inactivation for microbiological food safety[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(2):402−424. doi: 10.1111/1541-4337.12418
|
[7] |
ZHU X Q, ZHEN D S, LI C Y, et al. One-step self-assembly of ZnPc/KMnF3: Yb, Er upconversion photodynamic therapy system for antibacterial applications[J]. Nano,2020,15(6):2050075. doi: 10.1142/S1793292020500757
|
[8] |
ZHANG Z H, WANG L H, ZENG X N, et al. Non-thermal technologies and its current and future application in the food industry: A review[J]. International Journal of Food Science & Technology,2019,54(1):1−13.
|
[9] |
CHEN B W, HUANG J M, LI H H, et al. Eradication of planktonic Vibrio parahaemolyticus and its sessile biofilm by curcumin-mediated photodynamic inactivation[J]. Food Control,2020,113:107181. doi: 10.1016/j.foodcont.2020.107181
|
[10] |
GULÍAS S, MCKENZIE G, BAYÓ M, et al. Effective photodynamic inactivation of 26Escherichia coli strains with different antibiotic susceptibility profiles: A planktonic and biofilm study[J]. Antibiotics,2020,9(3):98. doi: 10.3390/antibiotics9030098
|
[11] |
DHINGRA S, RAHMAN A A, PEILE E, et al. Microbial resistance movements: An overview of global public health threats posed by antimicrobial resistance, and how best to counter[J]. Frontiers in Public Health,2020,8:535668. doi: 10.3389/fpubh.2020.535668
|
[12] |
BENJAMIN PIÑA, JOSEP M, BAYONA J M, et al. On the contribution of reclaimed wastewater irrigation to the potential exposure of humans to antibiotics, antibiotic resistant bacteria and antibiotic resistance genes-NEREUS COST Action ES1403 position paper[J]. Journal of Environmental Chemical Engineering,2020,8(1):2213−3437.
|
[13] |
AIYAR A, PINGALI P. Pandemics and food systems-towards a proactive food safety approach to disease prevention & management[J]. Food Security,2020(7):749−756.
|
[14] |
MATAMOROSRECIO A, FRANCOGONZALEZ J F, FORGIONE R E, et al. Understanding the antibacterial resistance: computational explorations in bacterial membranes[J]. ACS Omega,2021,6(9):6041−6054. doi: 10.1021/acsomega.0c05590
|
[15] |
李昕, 曾洁, 王岱, 等. 细菌耐药耐受性机制的最新研究进展[J]. 中国抗生素杂志,2020,45(2):113−121. [LI X, ZENG J, WANG D, et al. The latest research progress on the mechanism of bacterial resistance to drug resistance[J]. Chinese Journal of Antibiotics,2020,45(2):113−121. doi: 10.3969/j.issn.1001-8689.2020.02.003
|
[16] |
赵占娟, 李世杰, 徐泽华, 等. 光动力治疗耐药细菌的研究进展[J]. 河北大学学报:自然科学版,2015,35(6):10. [ZHAO Z J, LI S J, XU Z H, et al. Research progress in photodynamic therapy of drug-resistant bacteria[J]. Journal of Hebei University: Natural Science Edition,2015,35(6):10.
|
[17] |
KASHEF N, HAMBLIN M R. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation?[J]. Drug Resist Updates,2017,31:31−42. doi: 10.1016/j.drup.2017.07.003
|
[18] |
HAMBLIN, MICHAEL R. Antimicrobial photodynamic inactivation: A bright new technique to kill resistant microbes[J]. Current Opinion in Microbiology,2016,33:67−73. doi: 10.1016/j.mib.2016.06.008
|
[19] |
萨仁高娃, 胡文忠, 冯可, 等. 植物精油及其成分对病原微生物抗菌机理的研究进展[J]. 食品科学,2020,41(11):285−294. [SARENGAOWA, HU W Z, FENG K, et al. Antimicrobial mechanisms of essential oils and their components on pathogenic bacteria: A review[J]. Food Science,2020,41(11):285−294. doi: 10.7506/spkx1002-6630-20190603-018
|
[20] |
HUANG J M, CHEN B W, LI H H, et al. Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes[J]. Food Control,2020,108:106886. doi: 10.1016/j.foodcont.2019.106886
|
[21] |
HU JIAMIAO, LIN SHAOLING, Tan B K, et al. Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA[J]. Food Research International,2018,111:265−271. doi: 10.1016/j.foodres.2018.05.042
|
[22] |
ALEX S, ANABELA B, CAMILA F, et al. Antimicrobial photodynamic inactivation mediated by rose bengal and erythrosine is effective in the control of food-related bacteria in planktonic and biofilm states[J]. Molecules,2018,23(9):2288. doi: 10.3390/molecules23092288
|
[23] |
GONG C, LI Y J, GAO R H, et al. Inactivation of specific spoilage organism (Pseudomonas) of sturgeon by curcumin-mediated photodynamic inactivation[J]. Photodiagnosis and Photodynamic Therapy,2020,31:101827. doi: 10.1016/j.pdpdt.2020.101827
|
[24] |
GAO Y, WE J, LI Z J, et al. Curcumin-mediated photodynamic inactivation (PDI) against DH5α contaminated in oysters and cellular toxicological evaluation of PDI-treated oysters[J]. Photodiagnosis and Photodynamic Therapy,2019,26(6):244−251.
|
[25] |
COSSU M, LEDDA L, COSSU A. Emerging trends in the photodynamic inactivation (PDI) applied to the food decontamination[J]. Food Research International,2021,144:110358. doi: 10.1016/j.foodres.2021.110358
|
[26] |
PRASAD A, DU L, ZUBAIR M, et al. Applications of light-emitting diodes (LEDs) in food processing and water treatment[J]. Food Engineering Reviews,2020(5):268−289.
|
[27] |
梁富强, 沈毅, 顾瑛, 等. 光动力治疗光源的研究新进展[J]. 激光生物学报,2019,28(2):97−108. [LIANG F Q, SHEN Y, GU Y, et al. New progress in the research of photodynamic therapy light sources[J]. Chinese Journal of Laser Biology,2019,28(2):97−108. doi: 10.3969/j.issn.1007-7146.2019.02.001
|
[28] |
赵家晴, 郭姝婧, 李业贤, 等. 激光及光动力疗法在甲真菌病治疗中的应用进展[J]. 山东医药,2021,61(12):98−102. [ZHAO J Q, GUO S J, LI Y X, et al. The application progress of laser and photodynamic therapy in the treatment of onychomycosis[J]. Shandong Medicine,2021,61(12):98−102. doi: 10.3969/j.issn.1002-266X.2021.12.025
|
[29] |
李婵婵, 宋继权, 吴剑波, 等. 鲜红斑痣的激光治疗及评价方法的研究进展[J]. 中国医疗美容,2020,10(11):1−5. [LI C C, SONG J Q, WU J B, et al. Research progress in laser treatment and evaluation methods of port wine stains[J]. China Medical Cosmetology,2020,10(11):1−5. doi: 10.19593/j.issn.2095-0721.2020.11.001
|
[30] |
OGONOWSKA P, ENG A W, PIERAIISKI M K, et al. Application and characterization of light-emitting diodes for photodynamic inactivation of bacteria[J]. Lighting Research & Technology,2019,51(4):612−624.
|
[31] |
张清阳, 王少雷, 苏美丞, 等. 牛奶光氧化研究进展[J]. 中国食物与营养,2020,26(12):19−23. [ZHANG Q Y, WANG S L, SU M H, et al. Research progress in milk photooxidation[J]. Chinese Food and Nutrition,2020,26(12):19−23. doi: 10.3969/j.issn.1006-9577.2020.12.005
|
[32] |
林以琳, 邱建清, 李世洋, 等. 核黄素介导的光动力技术的研究进展[J]. 食品工业科技,2020,41(6):332−337. [LIN Y L, QIU J Q, LI S Y, et al. Research progress of riboflavin-mediated photodynamic technology[J]. Science and Technology of Food Industry,2020,41(6):332−337. doi: 10.13386/j.issn1002-0306.2020.06.055
|
[33] |
张雨宸, 谢晶. LED光照灭菌技术在果蔬保鲜加工中的应用及其研究[J]. 食品与机械,2019,35(8):155−160. [ZHANG Y C, XIE J. The application and research of LED light sterilization technology in the preservation and processing of fruits and vegetables[J]. Food and Machinery,2019,35(8):155−160. doi: 10.13652/j.issn.1003-5788.2019.08.029
|
[34] |
张佳玮, 马志远, 赵传壮, 等. 卟啉衍生物及其高分子材料[J]. 高分子学报,2018(7):864−877. [ZHANG J W, MA Z Y, ZHAO C Z, et al. Porphyrin derivatives and their polymer materials[J]. Acta Polymerica Sinica,2018(7):864−877. doi: 10.11777/j.issn1000-3304.2018.18023
|
[35] |
LI X S, LEE S, YOON J. Supramolecular photosensitizers rejuvenate photodynamic therapy[J]. Chemical Society Reviews,2018,47(4):1174−1188. doi: 10.1039/C7CS00594F
|
[36] |
NYAMU S N, LUCY O, ERIC M, et al. Antimicrobial photodynamic activity of phthalocyanine derivatives[J]. Advances in Chemistry,2018(3):1−8.
|
[37] |
LIU Q, WACKENHUT F, HAULER O, et al. Hypericin: Single molecule spectroscopy of an active natural drug[J]. The journal of physical chemistry[J]. Food Science,2020,124(12):2497−2504.
|
[38] |
DAMYEH M S, MEREDDY R, NETZEL M E, et al. An insight into curcumin-based photosensitization as a promising and green food preservation technology[J]. Comprehensive Reviews in Food Science and Food Safety,2020:1−33.
|
[39] |
DURKEE H, ARBOLEDA A, AGUILAR M C, et al. Rose bengal photodynamic antimicrobial therapy to inhibit Pseudomonas aeruginosa keratitis isolates[J]. Lasers in Medical Science,2020,35(4):861−866. doi: 10.1007/s10103-019-02871-9
|
[40] |
FEKRIRAD Z, DARABPOUR E, KASHEF N. Eradication of Acinetobacter baumannii planktonic and biofilm cells through erythrosine-mediated photodynamic inactivation augmented by acetic acid and chitosan[J]. Current Microbiology,2021:1−8.
|
[41] |
OTIENO W, LIU C, DENG H, et al. Hypocrellin B-mediated photodynamic inactivation of gram-positive antibiotic-resistant bacteria: An in vitro study[J]. Photobiomodulation Photomedicine and Laser Surgery,2019,38(1):36−42.
|
[42] |
HASENLEITNER M, PLAETZER K. In the right light: Photodynamic inactivation of microorganisms using a LED-based illumination device tailored for the antimicrobial application[J]. Antibiotics,2020,9(1):13.
|
[43] |
陈勇, 李婉婉, 周江蛟, 等. 光动力疗法分子机制研究进展[J]. 中南大学学报(医学版),2014,39(1):102−108. [CHEN Y, LI W W, ZHOU J J, et al. Molecular mechanism of photodynamic therapy[J]. Journal of Central South University (Medical Science),2014,39(1):102−108.
|
[44] |
QUIROGA E D, CORDERO P, MORA S J, et al. Mechanistic aspects in the photodynamic inactivation of Candida albicans sensitized by a dimethylaminopropoxy porphyrin and its equivalent with cationic intrinsic charges[J]. Photodiagnosis and Photodynamic Therapy,2020,31:101877. doi: 10.1016/j.pdpdt.2020.101877
|
[45] |
FAN Y T, ZHOU T J, CUI P F, et al. Modulation of intracellular oxygen pressure by dual-drug nanoparticles to enhance photodynamic therapy[J]. Advanced Functional Materials,2019,29(10):1806708.1−1806708.12.
|
[46] |
LI Z Z, WANG D, XU M S, et al. Fluorine-containing graphene quantum dots with a high singlet oxygen generation applied for photodynamic therapy[J]. Journal of materials chemistry. B,2020,8(13):2598−2606. doi: 10.1039/C9TB02529D
|
[47] |
SRIMAGAL A, RAMESH T, SAHU J K. Effect of light emitting diode treatment on inactivation of Escherichia coli in milk[J]. LWT-Food Science and Technology,2016,71:378−385. doi: 10.1016/j.lwt.2016.04.028
|
[48] |
CORRÊA TQ, BLANCO K C, GARCIA R B, et al. Effects of ultraviolet light and curcumin-mediated photodynamic inactivation on microbiological food safety: A study in meat and fruit[J]. Photodiagnosis and Photodynamic Therapy,2020,30:101678. doi: 10.1016/j.pdpdt.2020.101678
|
[49] |
DUSE L, BAGHDAN E, PINNAPIREDDY S R, et al. Preparation and characterization of curcumin loaded chitosan nanoparticles for photodynamic therapy[J]. Physica Status Solidi (A),2018,215(15):17007709.
|
[50] |
周阿容, 陈妮, 郑宝东, 等. 姜黄素介导的光动力技术对真空包装鲜莲胀袋控制效果的研究[J]. 食品科技,2019,44(6):45−50. [ZHOU A R, CHEN N, ZHENG B D, et al. Study on the effect of curcumin-mediated photodynamic technology on the control effect of vacuum packaging fresh lotus bag expansion[J]. Food Science and Technology,2019,44(6):45−50. doi: 10.13684/j.cnki.spkj.2019.06.008
|
[51] |
藏磊, 马纪兵, 韩玲, 等. 活性氧对宰后牦牛肉成熟过程中腺苷一磷酸活化蛋白激酶通路、糖酵解及肉品质的影响[J]. 食品与发酵工业,2020,46(12):44−50. [ZANG L, MA J B, HAN L, et al. Effects of reactive oxygen species on adenosine monophosphate-activated protein kinase pathway, glycolysis and meat quality during the maturation of yak meat after slaughter[J]. Food and Fermentation Industry,2020,46(12):44−50. doi: 10.13995/j.cnki.11-1802/ts.022584
|
[52] |
LIN Y L, HU J M, LI S Y, et al. Curcumin-based photodynamic sterilization for preservation of fresh-cut Hami melon[J]. Molecules,2019,24(13):2374. doi: 10.3390/molecules24132374
|
[53] |
LUKSIENE Z, BROVKO L. Antibacterial photosensitization-based treatment for food safety[J]. Food Engineering Reviews,2013,5(4):185−199. doi: 10.1007/s12393-013-9070-7
|
[54] |
TORTIK N, SPAETH A, PLAETZER K. Photodynamic decontamination of foodstuff from Staphylococcus aureus based on novel formulations of curcumin[J]. Photochemical & Photobiological Sciences,2014,13(10):1402−1409.
|
[55] |
于金珅, 张芳. 姜黄素介导的光动力技术对鲜切马铃薯的杀菌效果[J]. 食品工业科技,2021,42(4):259−263,270. [YU JS, ZHANG F. The bactericidal effect of curcumin-mediated photodynamic technology on fresh-cut potatoes[J]. Food Industry Science and Technology,2021,42(4):259−263,270. doi: 10.13386/j.issn1002-0306.2020060050
|
[56] |
CHO G L, HA J W. ERYTHROSINE B (Red D ye No. 3): A potential photosensitizer for the photodynamic inactivation of foodborne pathogens in tomato juice[J]. Journal of Food Safety,2020,40(4):e12813.
|
[57] |
PASKEVICIUTE E, ZUDYTE B, LUKSIENE Z. Towards better microbial safety of fresh produce: Chlorophyllin-based photosensitization for microbial control of foodborne pathogens on cherry tomatoes[J]. Journal of Photochemistry & Photobiology B Biology Official Journal of the European Society for Photobiology,2018:130−136.
|
[58] |
CHEN B W, HUANG J M, LIU Y, et al. Effects of the curcumin-mediated photodynamic inactivation on the quality of cooked oysters with Vibrio parahaemolyticus during storage at different temperature[J]. International Journal of Food Microbiology,2021,345:109152. doi: 10.1016/j.ijfoodmicro.2021.109152
|
[59] |
LI H H, TAN L J, CHEN B W, et al. Antibacterial potency of riboflavin-mediated photodynamic inactivation against Salmonella and its influences on tuna quality[J]. LWT-Food Science and Technology,2021,146:111462. doi: 10.1016/j.lwt.2021.111462
|
[60] |
HUANG J M, CHEN B W, ZENG Q H, et al. Application of the curcumin-mediated photodynamic inactivation for preserving the storage quality of salmon contaminated with L. monocytogenes[J]. Food Chemistry,2021,359:129974. doi: 10.1016/j.foodchem.2021.129974
|
[61] |
GALSTYAN A, DOBRINDT U. Determining and unravelling origins of reduced photoinactivation efficacy of bacteria in milk[J]. Journal of Photochemistry and Photobiology B-Biology,2019,197:111554. doi: 10.1016/j.jphotobiol.2019.111554
|
[62] |
林少玲, 黄晨楹, 朱子瑶, 等. 非热力光动力灭菌技术在食品安全中的研究进展[J]. 中国食品学报,2018,18(7):323−331. [LIN S L, HUANG C Y, ZHU Z Y, et al. Research progress of non-thermal photodynamic sterilization technology in food safety[J]. Chinese Journal of Food Science,2018,18(7):323−331. doi: 10.16429/j.1009-7848.2018.07.039
|
[63] |
郑宝东, 林少玲, 曾绍校, 等. 光动力技术研究进展及其在食品工业中的应用前景[J]. 食品与生物技术学报,2020,39(5):6−15. [ZHENG B D, LIN S L, ZENG S X, et al. Research progress of photodynamic technology and its application prospects in food industry[J]. Journal of Food and Biotechnology,2020,39(5):6−15. doi: 10.3969/j.issn.1673-1689.2020.05.002
|
[64] |
SU L Y, HUANG J M, LI H H, et al. Chitosan-riboflavin composite film based on photodynamic inactivation technology for antibacterial food packaging[J]. International Journal of Biological Macromolecules,2021,172:231−240. doi: 10.1016/j.ijbiomac.2021.01.056
|
1. |
张瑞娟,苏艳群,夏菲,刘金刚,肖贵华,孙德文,杨小博,黄举. 不同种类研磨淀粉用于纸质食品包装的防油性能研究. 中国造纸. 2025(01): 62-68+84 .
![]() | |
2. |
李晶晶,张甜甜,佟岳,刘培玲. 高静压协同酸水解促淀粉颗粒纳米晶体化. 中国食品学报. 2024(12): 57-68 .
![]() | |
3. |
张芮娟. 固体制剂制药工艺及质量控制研究. 粘接. 2023(04): 149-152 .
![]() | |
4. |
高琦,张首央,唐子程,彭雪,王宁,薛友林. 蛋白质纳米颗粒的制备及其在食品领域的应用研究进展. 食品工业科技. 2023(11): 30-37 .
![]() | |
5. |
段智颖,王申宛,艾斌凌,郑丽丽,郑晓燕,杨旸,校导,杨劲松,盛占武. 表没食子儿茶素没食子酸酯-香蕉脱支淀粉纳米颗粒的绿色制备及其性质. 食品科学. 2023(12): 74-83 .
![]() |