WEI Jing, TANG Lijie, LOU Xiaoyue, et al. GC-MS Analysis of Constituents of Volatile Oil in Different Parts of Vitex negundo var. heterophylla[J]. Science and Technology of Food Industry, 2022, 43(12): 310−316. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100145.
Citation: WEI Jing, TANG Lijie, LOU Xiaoyue, et al. GC-MS Analysis of Constituents of Volatile Oil in Different Parts of Vitex negundo var. heterophylla[J]. Science and Technology of Food Industry, 2022, 43(12): 310−316. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100145.

GC-MS Analysis of Constituents of Volatile Oil in Different Parts of Vitex negundo var. heterophylla

More Information
  • Received Date: October 17, 2021
  • Available Online: April 14, 2022
  • Objective: The study aimed to compare the variance of constituents of volatile oil in the stems, leaves and flowers of Vitex negundo var. heterophylla (VNH). Methods: The volatile oil in the stems, leaves and flowers of VNH were extracted by hydrodistillation, respectively, and their constituents were analyzed and identified by GC-MS, and the differences in their chemical compositions were analyzed by principal component analysis (PCA) and cluster analysis. Results: Total of 83 volatile components were identified from different parts of the VNH, including olefins, alcohols, ketones, esters, etc. 14, 58 and 55 volatile components were detected from the stems, leaves, and flowers, accounting for 59.91%, 98.32% and 95.83% of the total volatile oils in each part, respectively. Only 8 volatile components were shared by three parts, whereas 4, 22 and 21 volatile components were unique to the stems, leaves and flowers, respectively. The differential components of the volatile oils from different parts of VNH were obtained by PCA, in which the signature volatile components in the stem were 2,4-bis (1,1-dimethylethyl)-phenol, 14-methyl-pentadecanoic acid, methyl ester, heneicosane, etc, and the trademark volatile components in the leaves were β-terpinene, elemol, caryophyllene oxide, etc, whereas the hallmark volatile components in the flowers were formed by sabenene, 2,3-dihydro-3-[2-aminoethyl]-5-methoxy-1,3- dimethyl-indole-2-one, citenamide, etc. As revealed by the results of the cluster analysis, the stems of VNH were clustered with the flowers and then with the leaves. Conclusion: The composition of the volatile oil in the stems, leaves and flowers of of VNH had certain variability, which would provide a scientific basis for the further medicinal or industrial exploitation of different parts of VNH.
  • [1]
    中国科学院《中国植物志》编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1982, 65: 131, 145.

    Editorial Board of Flora of China, Chinese Academy of Sciences. Flora of China[M]. Beijing: Science Press, 1982, 65: 131, 145.
    [2]
    GILL B S, MEHRA R, KUMAR N S. Vitex negundo and its medicinal value[J]. Molecular Biology Reports, 2018, 45: 2925−2934.
    [3]
    ZHENG C J, LI H Q, REN S C, et al. Phytochemical and pharmacological profile of Vitex negundo[J]. Phytotherapy Research, 2015, 29: 633−647.
    [4]
    XU J M, HU B C, YUAN L, et al. Labdanes and megastigmanes from Vitex negundo var. heterophylla[J]. Fitoterapia,2019,137:104265−104273. doi: 10.1016/j.fitote.2019.104265
    [5]
    HUANG Y, DING G Y, HU P. Vitexnegheteroin M, a new phenolic glycoside from Vitex negundo var. heterophylla[J]. Natural Product Research, 2021, 35(9): 1518−1524.
    [6]
    QIU C, TONG L, YUAN T, et al. Constituents from Vitex negundo var. heterophylla and their inhibition of nitric oxide production[J]. Journal of Natural Medicines,2017,71(1):292−298. doi: 10.1007/s11418-016-1032-y
    [7]
    HU P, LI D H, HU X, et al. Lignans and triterpenoids from Vitex negundo var. heterophylla and their biological evaluation[J]. Fitoterapia,2016,111:147−53. doi: 10.1016/j.fitote.2016.04.020
    [8]
    刘晶鑫, 谢建春, 孙宝国, 等. 荆条挥发油中β-丁香烯的提取分离[J]. 食品与发酵工业,2007,33(10):168−170. [LIU Jingxin, XIE Jianchun, SUN Baoguo, et al. Extraction and separation of p-caryophyllene from leaf oil of Vitex negundo L. var. heterophyl (Franch.) Rehd[J]. Food and Fermentation Industries,2007,33(10):168−170.

    LIU Jingxin, XIE Jianchun, SUN Baoguo, et al. Extraction and separation of p-caryophyllene from leaf oil of Vitex negundo L. var. heterophyl (Franch. ) Rehd[J]. Food and Fermentation Industries, 2007, 33(10): 168-170.
    [9]
    王发松, 任三香, 杨得坡, 等. 荆条叶挥发油的气相色谱-质谱分析[J]. 质谱学报,2004,25(1):61−64. [WANG Fasong, REN Sanxiang, YANG Depo, et al. Determination of the volatile oil extracted from leaves of Vitex negundo var. heterophylla Rehd. by gas chromatograohy-mass spectrometry[J]. Journal of Chinese Mas Spectrometry Society,2004,25(1):61−64. doi: 10.3969/j.issn.1004-2997.2004.01.013

    WANG Fasong, REN Sanxiang, YANG Depo, et al. Determination of the volatile oil extracted from leaves of Vitex negundo var. heterophylla Rehd. by gas chromatograohy-mass spectrometry[J]. Journal of Chinese Mas Spectrometry Society, 2004, 25(1): 61-64. doi: 10.3969/j.issn.1004-2997.2004.01.013
    [10]
    张书锋, 董庆峰, 胡聪, 等. 石家庄野生荆条花挥发油的化学成分[J]. 中国实验方剂学杂志,2013,19(23):151−153. [ZHANG Shufeng, DONG Qingfeng, HU Cong, et al. Chemical composition of flower volatile oil of wild Vitex negundo var. heterophylla from Shijiazhuang[J]. Chinese Journal of Experimental Traditional Medical Formulae,2013,19(23):151−153.

    ZHANG Shufeng, DONG Qingfeng, HU Cong, et al. Chemical composition of flower volatile oil of wild Vitex negundo var. heterophylla from Shijiazhuang[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2013, 19(23): 151-153.
    [11]
    杨翠, 赵锦花. GP-MSE/GC-MS分析夏枯草不同部位挥发性成分[J]. 食品工业科技,2019,40(13):180−185,192. [YANG Cui, ZHAO Jinhua. Analysis of volatile components from different parts of Prunella vulgaris by GP-MSE/GC-MS[J]. Science and Technology of Food Industry,2019,40(13):180−185,192.

    YANG Cui, ZHAO Jinhua. Analysis of volatile components from different parts of Prunella vulgaris by GP-MSE/GC-MS[J]. Science and Technology of Food Industry, 2019, 40(13): 180-185, 192.
    [12]
    FIDYT K, FIEDOROWICZ A, STRZADALA L, et al. β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties[J]. Cancer Medicine,2016,5(10):3007−3017. doi: 10.1002/cam4.816
    [13]
    ARUL S, RAJAGOPALAN H, RAVI J, et al. Beta-caryophyllene suppresses ovarian cancer proliferation by inducing cell cycle arrest and apoptosis[J]. Anti-Cancer Agents in Medicinal Chemistry,2020,20(13):1530−1537. doi: 10.2174/1871520620666200227093216
    [14]
    KOYAMA S, PURK A, KAUR M, et al. Beta-caryophyllene enhances wound healing through multiple routes[J]. PLoS One,2019,14(12):1−32.
    [15]
    MACHADO K D C, ISLAM M T, ALI E S, et al. A systematic review on the neuroprotective perspectives of beta-caryophyllene[J]. Phytotherapy Research,2018,32(12):2376−2388. doi: 10.1002/ptr.6199
    [16]
    MOO C L, YANG S K, OSMAN M A, et al. Antibacterial activity and mode of action of β-caryophyllene on Bacillus cereus[J]. Polish Journal of Microbiology,2020,69(1):1−6.
    [17]
    LI H, WANG D, CHEN Y, et al. β-Caryophyllene inhibits high glucose-induced oxidative stress, inflammation and extracellular matrix accumulation in mesangial cells[J]. International Immunopharmacology,2020,84:106556−106564. doi: 10.1016/j.intimp.2020.106556
    [18]
    TURKEZ H, SOZIO P, GEYIKOGLU F, et al. Neuroprotective effects of farnesene against hydrogen peroxide-induced neurotoxicity in vitro[J]. Cellular and Molecular Neurobiology,2014,34(1):101−111. doi: 10.1007/s10571-013-9991-y
    [19]
    SONG X, QIN Y G, YIN Y, et al. Identification and behavioral assays of alarm pheromone in the Vetch Aphid Megoura viciae[J]. Journal of Chemical Ecology, 2021, 47(8-9): 740-746.
    [20]
    贾殿勇, 高世庆, 段鹏飞, 等. [反]-β-法尼烯合成酶基因在植物抗蚜分子育种中的应用[J]. 生物工程学报,2018,34(1):12−23. [JIA Dianyong, GAO Shiqing, DUAN Pengfei, et al. Metabolic engineering of (E)-β-farnesene synthase genes for aphid-resistant genetically modified plants[J]. Chinese Journal of Biotechnology,2018,34(1):12−23.

    JIA Dianyong, GAO Shiqing, DUAN Pengfei, et al. Metabolic engineering of (E)-β-farnesene synthase genes for aphid-resistant genetically modified plants[J]. Chinese Journal of Biotechnology, 2018, 34(1): 12-23.
    [21]
    WANG G P, YU X D, FAN J, et al. Expressing an (E)-β-farnesene synthase in the chloroplast of tobacco affects the preference of green peach aphid and its parasitoid[J]. Journal of Integrative Plant Biology,2015,57(9):770−782. doi: 10.1111/jipb.12319
    [22]
    HAN N R, MOON P D, RYU K J, et al. β-eudesmol suppresses allergic reactions via inhibiting mast cell degranulation[J]. Clinical and Experimental Pharmacology and Physiology,2017,44(2):257−265. doi: 10.1111/1440-1681.12698
    [23]
    ACHARYA B, CHAIJAROENKUL W, NA-BANGCHANG K. Therapeutic potential and pharmacological activities of β-eudesmol[J]. Chemical Biology & Drug Design,2021,97(4):984−996.
    [24]
    NARAHARA C, SAEHENG T, CHAIJAROENKUL W, et al. β-Eudesmol induces the expression of apoptosis pathway proteins in cholangiocarcinoma cell lines[J]. Journal of Research in Medical Sciences,2020,25:7−13. doi: 10.4103/jrms.JRMS_291_19
    [25]
    TSHERING G, PIMTONG W, PLENGSURIYAKARN T, et al. Anti-angiogenic effects of beta-eudesmol and atractylodin in developing zebrafish embryos[J]. Comparative Biochemistry and Physiology C-toxicology & Pharmacology,2021,243:1−7.
    [26]
    GUO W, LIU S, JU X, et al. The antitumor effect of hinesol, extract from Atractylodes lancea (Thunb.) DC. by proliferation, inhibition, and apoptosis induction via MEK/ERK and NF-κB pathway in non-small cell lung cancer cell lines A549 and NCI-H1299[J]. Journal of Cellular Biochemistry,2019,120(11):18600−18607. doi: 10.1002/jcb.28696
    [27]
    MASUDA Y, KADOKURA T, ISHII M, et al. Hinesol, a compound isolated from the essential oils of Atractylodes lancea rhizome, inhibits cell growth and induces apoptosis in human leukemia HL-60 cells[J]. Journal of Natural Medicines,2015,69(3):332−339. doi: 10.1007/s11418-015-0897-5
    [28]
    田震, 徐亚元, 李大婧, 等. 基于SPME-GC-MS分析不同干燥方式对香葱挥发油成分的影响[J]. 食品工业科技,2021,42(4):232−244. [TIAN Zhen, XU Yayuan, LI Dajing, et al. Analysis of volatile components in dried chives by SPME-GC-MS[J]. Science and Technology of Food Industry,2021,42(4):232−244.

    TIAN Zhen, XU Yayuan, LI Dajing, et al. Analysis of volatile components in dried chives by SPME-GC-MS[J]. Science and Technology of Food Industry, 2021, 42(4): 232-244.
    [29]
    郑文迪, 关倩倩, 刘长根, 等. 基于GC-MS法对比广西地区酸菜和酸笋风味的差异[J]. 食品与发酵工业,2020,46(4):253−257. [ZHENG Wendi, GUAN Qianqian, LIU Changgen, et al. Comparison of flavors of Suancai and Suansun in Guangxi based on GC-MS[J]. Food and Fermentation Industries,2020,46(4):253−257.

    ZHENG Wendi, GUAN Qianqian, LIU Changgen, et al. Comparison of flavors of Suancai and Suansun in Guangxi based on GC-MS[J]. Food and Fermentation Industries, 2020, 46(4): 253-257.
    [30]
    滕中秋, 郝庆秀, 金艳, 等. 基于HS-SPME-GC-MS的不同产地彝药满山香挥发性成分比较研究[J]. 中国中药杂志,2018,43(15):3216−3222. [TENG Zhongqiu, HAO Qingxiu, JIN Yan, et al. Comparison of volatile components in Schisandra propinqua from different habitats by HS-SPME-GC-MS[J]. China Journal of Chinese Materia Medica,2018,43(15):3216−3222.

    TENG Zhongqiu, HAO Qingxiu, JIN Yan, et al. Comparison of volatile components in Schisandra propinqua from different habitats by HS-SPME-GC-MS[J]. China Journal of Chinese Materia Medica, 2018, 43(15): 3216-3222.
  • Cited by

    Periodical cited type(3)

    1. 周法婷,李迪,李开凤,蒋忠桂,魏蝶,丛之慧,陈井生,顾欣,肖国生. 基于网络药理学及分子对接探讨猪胶原血管紧张素转换酶抑制肽的降压机制. 食品与发酵工业. 2024(18): 217-224 .
    2. 江文婷,陈旭,蔡茜茜,杨傅佳,黄丹,黄建联,汪少芸. 基于分子对接技术研究鱼源抗冻多肽与鱼肌球蛋白的相互作用. 食品工业科技. 2022(20): 29-38 . 本站查看
    3. 陈姣,肖静,陈林,刘隆臻. 基于新型冠状病毒3CL~(pro)结构的小肽抑制剂虚拟筛选. 江苏海洋大学学报(自然科学版). 2021(03): 69-75 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (279) PDF downloads (29) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return