ZHANG Zhi, SONG Wei, YAN Jianying, et al. Optimization of Ultrasonic Assisted Enzymatic Extraction Process and Analysis of Physicochemical Properties of Dietary Fiber from Camellia oleifera Meal[J]. Science and Technology of Food Industry, 2022, 43(18): 162−169. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100124.
Citation: ZHANG Zhi, SONG Wei, YAN Jianying, et al. Optimization of Ultrasonic Assisted Enzymatic Extraction Process and Analysis of Physicochemical Properties of Dietary Fiber from Camellia oleifera Meal[J]. Science and Technology of Food Industry, 2022, 43(18): 162−169. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100124.

Optimization of Ultrasonic Assisted Enzymatic Extraction Process and Analysis of Physicochemical Properties of Dietary Fiber from Camellia oleifera Meal

More Information
  • Received Date: October 13, 2021
  • Available Online: July 05, 2022
  • Dietary fiber has many physiological functions and outstanding application prospects, while the physiological characteristics of soluble dietary fiber are better than that of insoluble dietary fiber. In order to improve the camellia meal in DF SDF yield, SDF yield as evaluation index, the ultrasonic assisted enzymatic, through the single factor experiments of enzyme, ultrasonic time, ultrasonic power, material liquid than four factors were studied, and based on single factor experiments, response surface optimization experiment, and the DF of get the physical and chemical properties and structure analysis. The results showed that the optimal extraction conditions were as follows: Enzyme dosage 0.2%, ultrasonic time 31 min, ultrasonic power 210 W, solid-liquid ratio 1:23 g/mL, SDF yield was 12.43%, IDF yield was 68.39%. The total dietary fibre (TDF) holding capacity, oil holding capacity and swelling capacity were 4.36 g/g, 3.67 g/g and 6.83 mL/g, respectively. The adsorption rate of cholesterol was 5.79 mg/g at pH2 and 8.38 mg/g at pH7. The adsorption rate of glucose was 11.49 mg/g. Through the analysis of structure characterization, it was speculated that the TDF of Camellia oleifera meal contains lignin, cellulose, hemicellulose and sugars. The surface of TDF was porous and uneven, and the particle size was 50.699 nm. This study improved the yield of SDF and proved that TDF of Camellia oleifera meal had good physical and chemical properties and structure, which would provide reference for improving the added value of Camellia oleifera meal.
  • [1]
    孙元琳, 李文多. 谷物膳食纤维制备及应用研究综述[J]. 郑州轻工业学院学报(自然科学版),2012,27(1):20−25. [SUN Y L, LI W D. Review on preparation and application of cereal dietary fiber[J]. Journal of Zhengzhou University of Light Industry (Natural Science),2012,27(1):20−25.

    SUN Y L, LI W D. Review on preparation and application of cereal dietary fiber [J]. Journal of Zhengzhou University of Light Industry (Natural Science), 2012, 27(1): 20-25.
    [2]
    WANG Y P, YANG L, FEI X Q, et al. Effect of Camellia seed cake extract on Aspergillus flavus[J]. Journal of Food Protection, 2019, 82(3).
    [3]
    LIU F Z, LI C, JING L, et al. Two kaempferol glycosides separated from Camellia oleifera meal by high-speed countercurrent chromatography and their possible application for antioxidation[J]. Journal of Food Science, 2019, 84(10).
    [4]
    NI Z J, LIU X, XIA B, et al. Effects of sugars on the flavor and antioxidant properties of the Maillard reaction products of Camellia seed meals[J]. Food Chemistry:X,2021:11.
    [5]
    SHI Q Y, GUO Q L, XIN Q L, et al. Study on solubility, water-holding capacity and stability of polypeptide from Camellia seed meal[J]. Advanced Materials Research,2014:3514.
    [6]
    张瀚文, 余秋文, 张一凡, 等. 膳食纤维的生理功能及改性方法研究进展[J]. 农业科技与装备,2021(1):64−65,68. [ZHANG H Y QIU W, ZHANG Y F, et al. Research progress on physiological functions and modification methods of dietary fiber[J]. Agricultural Science & Technology and Equipment,2021(1):64−65,68.

    ZHANG H Y QIU W, ZHANG Y F, et al. Research progress on physiological functions and modification methods of dietary fiber [J]. Agricultural Science & Technology and Equipment, 2021(1): 64-65, 68.
    [7]
    李怡杰, 陆海南, 覃江克, 黎国庆, 叶高杰. 微波辅助提取油茶枯中膳食纤维的工艺优化[J]. 食品科技,2013,38(5):188−192. [LI Y J, LU H N, QIN J K, et al. Optimization of microwave-assisted extraction of dietary fiber from oil tea withered[J]. Food Science and Technology,2013,38(5):188−192.

    LI Y J, LU H N, QIN J K, et al. Optimization of microwave-assisted extraction of dietary fiber from oil tea withered [J]. Food Science and Technology, 2013, 38(5): 188-192.
    [8]
    卢忠英, 姚元勇, 陈仕学, 等. 响应面微波辅助酶法提取油茶枯水溶性膳食纤维的工艺优化[J]. 食品工业科技,2015,36(20):289−292,298. [LU Z Y, YAO Y Y, CHEN S X, et al. Optimization of response surface microwave-assisted enzymatic extraction of water-soluble dietary fiber from oil tea leaves[J]. Science and Technology of Food Industry,2015,36(20):289−292,298.

    LU Z Y, YAO Y Y, CHEN S X, et al. Optimization of response surface microwave-assisted enzymatic extraction of water-soluble dietary fiber from oil tea leaves [J]. Science and technology of food industry, 2015, 36(20): 289-292, 298.
    [9]
    陈晓媛 里氏木霉发酵制备油茶粕可溶性膳食纤维[D]. 杭州: 浙江工商大学, 2018.

    CHEN X Y. Preparation of soluble dietary fiber from oil tea meal by Trichoderma reesei fermentation [D]. Hangzhou: Zhejiang Gongshang University, 2018.
    [10]
    马力, 陈永忠. 油茶籽壳中高活性膳食纤维提取工艺研究[C]//国家林业局、广西壮族自治区人民政府, 中国林学会. 第二届中国林业学术大会—S9 木本粮油产业化论文集. 国家林业局, 广西壮族自治区人民政府、中国林学会: 中国林学会, 2009: 550-558.

    MA L, CHEN Y Z. Study on extraction technology of high active dietary fiber from camellia oil seed shell [C]// State Forestry Administration, Guangxi Zhuang Autonomous Region People’s Government, Chinese Forestry Society. The second China Forestry Academic Conference-S9 Woody Grain and Oil Industrialization proceedings. State Forestry Administration, Guangxi Zhuang Autonomous Region People’s Government, Chinese Forestry Society: Chinese Forestry Society, 2009: 550-558.
    [11]
    黄冬云. 米糠膳食纤维的酶法改性及功能性质研究[D]. 无锡: 江南大学, 2014.

    HUANG D Y. Study on enzymatic modification and functional properties of rice bran dietary fiber [D]. Wuxi: Jiangnan University, 2014.
    [12]
    GAN Jiapan, XIE Liang, PENG Guanyi, et al. Systematic review on modification methods of dietary fiber[J]. Food Hydrocolloids,2021:119.
    [13]
    PREETI B. SUBHEDAR, PARAG R GOGATE. Enhancing the activity of cellulase enzyme using ultrasonic irradiations[J]. Journal of Molecular Catalysis. B Enzymatic,2014:101.
    [14]
    张丽萍. 海带膳食纤维降脂减肥功效及作用机制研究[D]. 青岛: 青岛科技大学, 2020.

    ZHANG Liping. Study on lipid-reducing effect and mechanism of kelp dietary fiber [D]. Qingdao: Qingdao University of Science and Technology, 2020.
    [15]
    WANG Z, YAN J Y, MA S, et al. Effect of wheat bran dietary fiber on structural properties of wheat starch after synergistic fermentation of Lactobacillus plantarum and Saccharomyces cerevisiae[J]. International Journal of Biological Macromolecules,2021:190.
    [16]
    ZHENG Y J, LI Y, TIAN H L. Effects of carboxymethylation, acidic treatment, hydroxypropylation and heating combined with enzymatic hydrolysis on structural and physicochemical properties of palm kernel expeller dietary fiber[J]. LWT,2020:133.
    [17]
    尹立晨, 童群义. 改性豆渣膳食纤维的理化性质、结构及其益生活性研究[J/OL]. 食品与发酵工业: 1−10 [2021-10-11]. https: //doi. org/10.13995/j. cnki. 11-1802/ts. 028365.

    YINL C, TONG Q Y. Study on physicochemical properties, structure and probiotics activity of modified soybean dregs dietary fiber [J]. Food and Fermentation Industry: 1−10 [2021-10-11].https://doi.org/10.13995/j.cnki.11-1802/ts.028365.
    [18]
    潘虹, 宋春钱, 刘和平, 等. 超声波辅助酶法提取莲藕渣可溶性膳食纤维的研究[J]. 浙江农业科学,2017,58(3):469−472. [PAN H, SONG C Q, LIU H P, et al. Study on ultrasonic assisted enzymatic extraction of soluble dietary fiber from Lotus root residue[J]. Zhejiang Agricultural Sciences,2017,58(3):469−472.

    PAN H, SONG C Q, LIU H P, et al. Study on ultrasonic assisted enzymatic extraction of soluble dietary fiber from Lotus root residue [J]. Zhejiang Agricultural Sciences, 2017, 58(3): 469-472.
    [19]
    张孟凡, 岳丽, 敬思群, 等. 超声辅助-酶解协同作用提取红枣渣膳食纤维及其促消化作用[J]. 食品工业科技,2019,40(7):205−212. [ZHANGM F, YUE L, JING S Q, et al. Extraction of dietary fiber from Jujube residue by ultrasonic-assisted enzymatic hydrolysis and its effect on digestion[J]. Science and Technology of Food Industry,2019,40(7):205−212. doi: 10.13386/j.issn1002-0306.2019.07.035

    ZHANGM F, YUE L, JING S Q, et al. Extraction of dietary fiber from Jujube residue by ultrasonic-assisted enzymatic hydrolysis and its effect on digestion [J]. Science and Technology of Food Industry, 2019, 40(7): 205-212. doi: 10.13386/j.issn1002-0306.2019.07.035
    [20]
    徐彩红, 李莎怡静, 李桂杰, 等. 响应面法优化米糠水溶性膳食纤维酶法提取工艺研究[J]. 粮食与饲料工业,2017(5):37−40,54. [XUC H, LIS Y J, LIG J, et al. Optimization of enzymatic extraction technology of water-soluble dietary fiber from rice bran by response surface methodology[J]. Food & Feed Industry,2017(5):37−40,54. doi: 10.7633/j.issn.1003-6202.2017.05.010

    XUC H, LIS Y J, LIG J, et al. Optimization of enzymatic extraction technology of water-soluble dietary fiber from rice bran by response surface methodology [J]. Food & Feed Industry, 2017(5): 37-40, 54. doi: 10.7633/j.issn.1003-6202.2017.05.010
    [21]
    陈丽, 饶杰, 赵永强, 等. 坛紫菜膳食纤维的响应面优化超声复合酶法提取及其对鱼糜凝胶强度的影响[J/OL]. 大连海洋大学学报: 1−13[2021-10-11]. https: //doi. org/10.16535/j. cnki. dlhyxb. 2020-279.

    CHEN L, RAO J, ZHAO Y Q, et al. Extraction of dietary fiber from Radish laver with response surface optimization and its effect on gel strength of surimi [J/OL]. Journal of dalian ocean university: 1−13 [2021-10-11].https://doi.org/10.16535/j.cnki.dlhyxb.2020-279.
    [22]
    文攀, 裴志胜, 朱婷婷, 等. 黄皮果肉可溶性膳食纤维制备工艺优化及单糖组成和结构表征[J]. 食品工业科技,2020,41(21):29−36. [WEN P, PEI Z S, ZHU T T, et al. Preparation process optimization and structure characterization of soluble dietary fiber from yellow skin flesh[J]. Science and Technology of Food Industry,2020,41(21):29−36.

    WEN P, PEI Z S, ZHU T T, et al. Preparation process optimization and structure characterization of soluble dietary fiber from yellow skin flesh [J]. Science and Technology of Food Industry, 2020, 41(21): 29-36.
    [23]
    包智影, 张智, 杜亚飞, 包瑞敏. 微生物法提取黄精多糖及体外降脂功能评价[J]. 中南林业科技大学学报, 2021, 41(5): 142−151.

    BAO Z Y, ZHANG Z, DU Y F, et al. Microbial extraction of polygonatum polysaccharide and evaluation of its lipid-lowering function in vitro[J]. Journal of Central South University of Forestry and Technology, 201, 41(5): 142−151.
    [24]
    ZHU Y, CHU J X, LU Z X, et al. Physicochemical and functional properties of dietary fiber from foxtail millet (Setaria italic) bran[J]. Journal of Cereal Science,2018:79.
    [25]
    吴婧, 刘祚祚, 吴杰, 罗秋君, 姜燕. 滇橄榄果渣膳食纤维的提取及其体外吸附性能研究[J/OL]. 食品工业科技: 1−15[2021-11-29]. https: //doi. org/10.13386/j. issn1002-0306.2021040269.

    WU J, LIU Z Z, WU J, et al. The extraction of Yunnan olive pomace dietary fiber and its adsorption properties in vitro studies [J/OL]. Food industry science and technology: 1−15 [2021-11-29].https://doi.org/10.13386/j.issn1002-0306.2021040269.
    [26]
    文攀, 裴志胜, 朱婷婷, 等. 黄皮果皮膳食纤维的物化性质及结构表征[J]. 食品科技,2020,45(5):254−260. [WEN P, PEI Z S, ZHUT T, et al. Physico-chemical properties and structural characterization of dietary fiber from yellow peel[J]. Science and Technology of Food Industry,2020,45(5):254−260.

    WEN P, PEI Z S, ZHUT T, et al. Physico-chemical properties and structural characterization of dietary fiber from yellow peel [J]. Science and Technology of Food Industry, 2020, 45(5): 254-260.
    [27]
    MARWA C R, SOUHIR A, SABU T, et al. Use of green chemistry methods in the extraction of dietary fibers from cactus rackets (Opuntia ficus indica): Structural and microstructural studies[J]. International Journal of Biological Macromolecules,2018:116.
    [28]
    林海晶. 麦麸水溶性膳食纤维的制备及改性研究[D]. 哈尔滨: 东北农业大学, 2017.

    LIN H J. Preparation and modification of water-soluble dietary fiber from wheat bran [D]. Harbin: Northeast Agricultural University, 2017.
    [29]
    张艳, 何翠, 刘玉凌, 等. 超声波改性对方竹笋膳食纤维性能和结构的影响[J]. 食品与发酵工业,2017,43(1):150−155. [ZHANG Y, HE C, LIU Y L, et al. Effects of ultrasonic modification on properties and structure of bamboo shoot dietary fiber[J]. Food and Fermentation Industries,2017,43(1):150−155.

    ZHANG Y, HE C, LIU Y L, et al. Effects of ultrasonic modification on properties and structure of bamboo shoot dietary fiber [J]. Food and Fermentation Industries, 2017, 43(1): 150-155.
    [30]
    李鹏冲, 李向力, 尹红娜等. 山楂水溶性膳食纤维提取工艺及结构研究[J]. 食品研究与开发,2019,40(5):118−122. [LI P C, LI X L, YIN H N et al. Study on extraction technology and structure of water-soluble dietary fiber from hawthorn[J]. Food Research and Development,2019,40(5):118−122. doi: 10.3969/j.issn.1005-6521.2019.05.021

    LI P C, LI X L, YIN H N et al. Study on extraction technology and structure of water-soluble dietary fiber from hawthorn [J]. Food research and development, 2019, 40(5): 118-122. doi: 10.3969/j.issn.1005-6521.2019.05.021
  • Cited by

    Periodical cited type(10)

    1. 毕泗伟. 食品安全监督抽检在食品监管中的作用. 食品安全导刊. 2025(05): 36-38 .
    2. 刘绮琪,陈坤才,许静琳,黄德演,余威,张维蔚. 基于多源数据的肉制品食品安全风险评价研究. 职业与健康. 2024(09): 1158-1166 .
    3. 杨瑞,赵豪豪,马海军. 食品安全抽样技术发展与提升. 食品安全质量检测学报. 2024(14): 293-298 .
    4. 杨子恩. 食品安全抽检数据质量提升策略研究. 食品安全导刊. 2023(04): 72-76 .
    5. 曹东丽,翟雨佳,杨栩,刘园,徐慧静. 冷冻饮品网络销售发展现状及对策研究. 质量安全与检验检测. 2023(01): 53-57 .
    6. 覃思森. 食品安全监督抽检的效能提升与发展建议. 食品安全导刊. 2023(30): 50-53 .
    7. 高超. 食品抽检重复性问题探析. 现代食品. 2023(17): 165-168 .
    8. 蓝小飞,谢琳,张丽娟,陈婷,施文婷. 食品安全指数法评价嘉兴市售水产品污染物残留风险. 湖北农业科学. 2023(S1): 200-204 .
    9. 郝相帅. 食品抽样环节存在的问题及其对策. 食品安全导刊. 2023(29): 179-181+185 .
    10. 范晓燕,张晓佳,易博春,靳亚卫,王艳英. 县域餐饮环节食品安全监管问题及提升策略. 食品安全导刊. 2023(35): 20-23 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (278) PDF downloads (21) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return