LI Guangyue, LI Xueling, QI Jiaojiao, et al. Optimization of Fermentation Conditions of Surfactin from Bacillus subtilis by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(12): 146−154. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100025.
Citation: LI Guangyue, LI Xueling, QI Jiaojiao, et al. Optimization of Fermentation Conditions of Surfactin from Bacillus subtilis by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(12): 146−154. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100025.

Optimization of Fermentation Conditions of Surfactin from Bacillus subtilis by Response Surface Methodology

More Information
  • Received Date: October 10, 2021
  • Available Online: April 14, 2022
  • In order to improve the surfactin production capacity of Bacillus subtilis FHYB201030, taking Bacillus subtilis FHYB201030 as the experimental strain, and CPC-BTB (cetylpyridyl chloride-bromothymol blue) value was used as the evaluation index. Single factor tests, Plackett-Burman test, steepest climbing test and response surface test were used to optimize the optimal fermentation conditions for surfactin production. Plackett-Burman test showed that temperature, lactose and glutamic acid (Glu) had significant effects on surfactin yield. The steepest climbing design and the Box-Behnken central combination design three-factor three-level test were used to calculate the culture medium composition with the highest surfactin yield: 25 g/L of lactose, 10 g/L of casein, 3 g/L of beef extract, 10 g/L of peptone, 5 g/L of NaCl, 0.5 mmol/L of Mn2+, 2.5 g/L of Glu. The optimum cultivation conditions were temperature of 40 ℃, rotation speed of 200 r/min, filling volume of 30%. Under the fermentation condition, the amount of surfactant produced by Bacillus subtilis FHYB201030 was 0.48 mg/mL, which was 34.56% higher than the 0.35 mg/mL before optimization. This result would lay a good foundation for improving the production level of surfactin.
  • [1]
    THÉATRE A, CANO-PRIETO C, BARTOLINI M, et al. The surfactin-like lipopeptides from Bacillus spp. : Natural biodiversity and synthetic biology for a broader application range[J]. Frontiers in Bioengineering and Biotechnology,2021,9:623701. doi: 10.3389/fbioe.2021.623701
    [2]
    JIANG J, GAO L, BIE X, et al. Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme[J]. BMC Microbiology,2016,16(1):31. doi: 10.1186/s12866-016-0645-3
    [3]
    ARIMA K, KAKINUMA A, TAMURA G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation[J]. Biochem Biophys Res Commun,1968,31(3):488−494. doi: 10.1016/0006-291X(68)90503-2
    [4]
    MEENA K R, DHIMA N R, SINGH K, et al. Purification and identification of a surfactin biosurfactant and engine oil degradation by Bacillus velezensis KLP2016[J]. Microbial Cell Factories,2021,20(1):1−12. doi: 10.1186/s12934-020-01497-9
    [5]
    ZHOU Z, LIU F, ZHANG X, et al. Cellulose-dependent expression and antibacterial characteristics of surfactin from Bacillus subtilis HH2 isolated from the giant panda[J]. PLoS One,2018,13(1):e0191991. doi: 10.1371/journal.pone.0191991
    [6]
    MEENA K R, SHARMA A, KUMAR R, et al. Two factor at a time approach by response surface methodology to aggrandize the Bacillus subtilis KLP2015 surfactin lipopeptide to use as antifungal agent[J]. Journal of King Saud University Science,2020,32(1):337−348. doi: 10.1016/j.jksus.2018.05.025
    [7]
    YUAN L F, ZHANG S, WANG Y H, et al. Surfactin inhibits membrane fusion during invasion of epithelial cells by enveloped viruses[J]. Journal of Virology,2018,92(21):e00809−18.
    [8]
    GAN P, JIN D, ZHAO X Y, et al. Bacillus-produced surfactin attenuates chronic inflammation in atherosclerotic lesions of ApoE(−/−) mice[J]. International Immunopharmacology,2016,35:226−234. doi: 10.1016/j.intimp.2016.03.043
    [9]
    RAMALINGAM V, VARUNKUMAR K, RAVIKUMAR V, et al. Production and structure elucidation of anticancer potential surfactin from marine actinomycete Micromonospora marina[J]. Process Biochemistry,2019,78(MAR.):169−177.
    [10]
    BARTAL A, VIGNESHWARI A, BÓKA B, et al. Effects of different cultivation parameters on the production of surfactin variants by a Bacillus subtilis strain[J]. Molecules,2018,23(10):2675. doi: 10.3390/molecules23102675
    [11]
    JAJOR P, PIAKOWSKA-PIETRAS D, KRASOWSKA, et al. Surfactin analogues produced by Bacillus subtilis strains grown on rapeseed cake[J]. Journal of Molecular Structure,2016,1126:141−146. doi: 10.1016/j.molstruc.2016.02.014
    [12]
    PRADO A, SANTOS B, VIEIRA I, et al. Evaluation of a new strategy in the elaboration of culture media to produce surfactin from Hemicellulosic corncob liquor[J]. Biotechnology Reports,2019,24:e00364. doi: 10.1016/j.btre.2019.e00364
    [13]
    ZHANG J H, XUE Q H, GAO H, et al. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery[J]. Microbial Cell Factories,2016,15(1):168. doi: 10.1186/s12934-016-0574-8
    [14]
    VARJANI S J, UPASANI V N. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant[J]. Bioresource Technology,2016,221:510−516. doi: 10.1016/j.biortech.2016.09.080
    [15]
    潘旭耀, 魏韬, 谭柱豪, 等. 芽孢杆菌种间原生质体融合选育高产surfactin新菌株[J]. 生物技术通报,2019,325(8):244−251. [PANG Xuyao, WEI Tao, TANG Zhuhao, et al. Breeding of new high-yielding surfactin strains by fusion of protoplasts between Bacillus species[J]. Biotechnology Bulletin,2019,325(8):244−251.

    PANG Xuyao, WEI Tao, TANG Zhuhao, et al. Breeding of new high-yielding surfactin strains by fusion of protoplasts between Bacillus species [J]. Biotechnology Bulletin, 2019, 325(8): 244-251.
    [16]
    YANG H, YU H, SHEN Z. A novel high-throughput and quantitative method based on visible color shifts for screening Bacillus subtilis THY-15 for surfactin production[J]. Journal of Industrial Microbiology & Biotechnology,2015,42(8):1139−1147.
    [17]
    NDLOVU T, RAUTENBACH M, KHAN S, et al. Variants of lipopeptides and glycolipids produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa cultured in different carbon substrates[J]. AMB Express,2017,7(1):109. doi: 10.1186/s13568-017-0367-4
    [18]
    ELAZZAZ A M, ABDELMONEIM T S, ALMAGHRABI A. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi arabia[J]. Saudi Journal of Biological Sciences,2015,22(4):466−475. doi: 10.1016/j.sjbs.2014.11.018
    [19]
    MENESES D P, GUDINA E J, FEMANDES F, et al. The yeast-like fungus Aureobasidium thailandense LB01 produces a new biosurfactant using olive oil mill wastewater as an inducer[J]. Microbiological Research,2017,204:40−47. doi: 10.1016/j.micres.2017.07.004
    [20]
    JOSHI S J, AL-WAHAIBI Y M, AL-BAHRY S N, et al. Production, characterization, and application of Bacillus licheniformis W16 biosurfactant in enhancing oil recovery[J]. Frontiers in Microbiology,2016,7:1853.
    [21]
    FEMADO M D S L, COUTTE F, RAVALLEC R, et al. An improvement of surfactin production by B. subtilis BBG131 using design of experiments in microbioreactors and continuous process in bubbleless membrane bioreactor[J]. Bioresource Technology,2016,218:944−952. doi: 10.1016/j.biortech.2016.07.053
    [22]
    张楠楠, 徐丹, 尹婷, 等. 枯草芽孢杆菌产脂肽的发酵条件优化[J]. 安徽农业科学,2017,45(15):108−112. [ZHANG Nannan, XU Dan, YIN Ting, et al. Optimization on fermentation conditions of surfactin by Bacillus subtilis ATCC 21332[J]. Journal of Anhui Agricultural Sciences,2017,45(15):108−112. doi: 10.3969/j.issn.0517-6611.2017.15.034

    ZHANG Nannan, XU Dan, YIN Ting, et al. Optimization on fermentation conditions of surfactin by Bacillus subtilis ATCC 21332[J]. Journal of Anhui Agricultural Sciences, 2017, 45(15): 108-112. doi: 10.3969/j.issn.0517-6611.2017.15.034
    [23]
    AMANI H, HAGHIGHI M, KESHTKAR M J. Production and optimization of microbial surfactin by Bacillus subtilis for ex situ enhanced oil recovery[J]. Petroleum Science and Technology,2013,31(12):1249−1258. doi: 10.1080/10916466.2010.542416
    [24]
    CHEN M C, WANG J P, ZHU Y J, et al. Antibacterial activity against Ralstonia solanacearum of the lipopeptides secreted from the Bacillus amyloliquefaciens strain FJAT‐2349[J]. Journal of Applied Microbiology,2019,126(5):1519−1529. doi: 10.1111/jam.14213
    [25]
    汤颖秀. 高产表面活性素枯草芽孢杆菌的ARTP选育、发酵条件优化及产物特性研究[D]. 镇江: 江苏大学, 2019.

    TANG Yingxiu. Study on ARTP breeding, fermentation conditions optimization and product characteristics of Bacillus subtilis with high-yield surfactin[D]. Zhenjiang: Jiangsu University, 2019.
    [26]
    姬杨, 冯红. 短小芽孢杆菌BA06产表面活性素培养基组分的优化[J]. 四川大学学报:自然科学版,2016,53(4):925−930. [JI Yang, FENG Hong. Optimization of fermentation medium for producing surfactin by Bacillus pumilus BA06[J]. Journal of Sichuan University (Natural Science Edition),2016,53(4):925−930.

    JI Yang, FENG Hong. Optimization of fermentation medium for producing surfactin by Bacillus pumilus BA06[J]. Journal of Sichuan University (Natural Science Edition), 2016, 53(4): 925-930.
  • Cited by

    Periodical cited type(7)

    1. 宁淼,乌日娜,贺凯茹,包雨飞,张钰欣,杨慧,武俊瑞. 益生菌缓解牛乳过敏的作用机制研究进展. 食品工业科技. 2025(05): 371-379 . 本站查看
    2. 梅芷晴,马浩睿,刘永峰,胡坚,舒琴. 羊乳母乳化及主要活性成分研究进展. 乳业科学与技术. 2024(04): 38-46 .
    3. 乔蕾蕾,杨敏,秦娟娟,廖海周,季伟,李茜. 酸诱导酪蛋白胶束-海藻酸钠乳液凝胶性质及其对原花青素的负载性能. 食品科学. 2023(16): 50-60 .
    4. 汤晓娜,许曦瑶,赵锋. 牛奶β-酪蛋白水解产物生物活性及A2乳制品的研究进展. 食品与发酵工业. 2023(19): 360-366 .
    5. 马小梅,苏津贤,陈遥,舒星富,张海霞,马忠仁. 动物乳中四种主要蛋白结构功能及其分离纯化方法研究进展. 西北民族大学学报(自然科学版). 2022(02): 74-79 .
    6. 钱冠林,孙敬,刘微,程娇,岳喜庆,郑艳. 双酶水解对脱脂牛乳致敏性的影响. 乳业科学与技术. 2022(04): 36-44 .
    7. 李敏,刘爱成,朱晴,陈馨萍,刘微,梁肖娜,郑艳,岳喜庆. 酶解对脱脂牛乳蛋白抗原性及感官特性的影响. 乳业科学与技术. 2022(04): 14-21 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (215) PDF downloads (24) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return