WU Haitao, ZHANG Yiwei. Comparative Study on Processing Characteristics of Linden Honey Polysaccharide and Multifloral Honey Polysaccharide[J]. Science and Technology of Food Industry, 2022, 43(14): 323−328. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090359.
Citation: WU Haitao, ZHANG Yiwei. Comparative Study on Processing Characteristics of Linden Honey Polysaccharide and Multifloral Honey Polysaccharide[J]. Science and Technology of Food Industry, 2022, 43(14): 323−328. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090359.

Comparative Study on Processing Characteristics of Linden Honey Polysaccharide and Multifloral Honey Polysaccharide

More Information
  • Received Date: October 10, 2021
  • Available Online: May 17, 2022
  • The purpose of this study was to study the processing characteristics of different honey polysaccharides and explore the effects of different kinds on the processing characteristics of honey polysaccharides. Linden honey polysaccharides (LHP) and multifloral honey polysaccharides (MHP) were prepared. The processing characteristics of polysaccharides honey were studied by thermodynamic and rheological analysis. The results showed that the weight losses of LHP and MHP were 85.05% and 81.3%, respectively. The thermal degradation temperatures of LHP and MHP were 236.7 and 322 ℃, respectively. Both LHP and MHP showed a wide exothermic reaction peak at 75 and 72 ℃, respectively. The viscosity of LHP and MHP remains unchanged at 1.3 and 1.2 mPa·s at high shear rates, respectively. The water holding capacity of LHP and MHP was 1.6 and 0.4 g water/g, respectively. The oil holding capacity of LHP and MHP was 18.8 and 11.4 g oil/g, respectively. It was suggested that honey polysaccharides had better heat resistance and viscosity. It could provide theoretical support for the application of honey polysaccharides in the development of functional foods and natural medicines.
  • [1]
    ZHENG H, PERREAU J, POWELL J E, et al. Division of labor in honey bee gut microbiota for plant polysaccharide digestion[J]. Proceedings of the National Academy of Sciences,2019,116(51):25909−25916. doi: 10.1073/pnas.1916224116
    [2]
    VALVERDE S, ARES A M, STEPHEN ELMORE J, et al. Recent trends in the analysis of honey constituents[J]. Food Chemistry,2022,116(51):25909−25916.
    [3]
    颜秋燕. 党参和党参蜂蜜中主要成分和活性物质的研究[D]. 杭州: 浙江工商大学, 2020.

    YAN Qiuyan. Study on main components and active substances in Codonopsis pilosula and Codonopsis pilosula honey[D]. Hangzhou: Zhejiang Gongshang University, 2020.
    [4]
    SIDDIQUI I R. Constitution of an arabinogalactomannan from honey[J]. Canadian Journal of Chemistry,1965,43(2):421−425. doi: 10.1139/v65-055
    [5]
    TONKS A J, DUDLEY E, PORTER N G, et al. A 5.8-kDa component of manuka honey stimulates immune cells via TLR4[J]. Journal of Leukocyte Biology,2007,82(5):1147−1155. doi: 10.1189/jlb.1106683
    [6]
    MEGHERBI M, HERBRETEAU B, FAURE R, et al. Polysaccharides as a marker for detection of corn sugar syrup addition in honey[J]. Journal of Agricultural and Food Chemistry,2009,57(6):2105−2111. doi: 10.1021/jf803384q
    [7]
    SASAKI M, TAKAGI A, SASAKI D, et al. Characteristics and function of an extracellular polysaccharide from a green alga Parachlorella[J]. Carbohydrate Polymers,2021,254:117252. doi: 10.1016/j.carbpol.2020.117252
    [8]
    HADIDI M, AMOLI P I, JELYANI A Z, et al. Polysaccharides from pineapple core as a canning by-product: Extraction optimization, chemical structure, antioxidant and functional properties[J]. International Journal of Biological Macromolecules,2020,163:2357−2364. doi: 10.1016/j.ijbiomac.2020.09.092
    [9]
    JI X, HOU C, YAN Y, et al. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill. ) fruit[J]. International Journal of Biological Macromolecules,2020,149:1008−1018. doi: 10.1016/j.ijbiomac.2020.02.018
    [10]
    BAO H, YOU S, CAO L, et al. Chemical and rheological properties of polysaccharides from fruit body of Auricularia auricular-judae[J]. Food Hydrocolloids,2016,57:30−37. doi: 10.1016/j.foodhyd.2015.12.031
    [11]
    TRIGUI I, YAICH H, SILA A, et al. Physicochemical properties of water-soluble polysaccharides from black cumin seeds[J]. International Journal of Biological Macromolecules,2018,117:937−946. doi: 10.1016/j.ijbiomac.2018.05.202
    [12]
    AM S. Removal of proteins-Sevag method[J]. Methods Carbohydr Chem,1965:5.
    [13]
    DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical chemistry,1956,28(3):350−356. doi: 10.1021/ac60111a017
    [14]
    Yuan Y, Xu X, Jing C, et al. Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities[J]. Carbohydrate polymers,2018,181:902−910. doi: 10.1016/j.carbpol.2017.11.061
    [15]
    王森. 扁桃胶多糖组分鉴定与加工特性变化规律研究[D]. 长沙: 中南林业科技大学, 2010.

    WANG Sen. Study on component identification and processing characteristics of almond gum polysaccharide [D]. Changsha: Central South University of Forestry Science and Technology, 2010
    [16]
    ROZI P, ABUDUWAILI A, MUTAILIFU P, et al. Sequential extraction, characterization and antioxidant activity of polysaccharides from Fritillaria pallidiflora Schrenk[J]. International Journal of Biological Macromolecules,2019,131:97−106. doi: 10.1016/j.ijbiomac.2019.03.029
    [17]
    Hu L, Liu R, Wu T, et al. Structural properties of homogeneous polysaccharide fraction released from wheat germ by hydrothermal treatment[J]. Carbohydrate Polymers,2020,240:116238. doi: 10.1016/j.carbpol.2020.116238
    [18]
    NUERXIATI R, ABUDUWAILI A, MUTAILIFU P, et al. Optimization of ultrasonic-assisted extraction, characterization and biological activities of polysaccharides from Orchis chusua D. Don (Salep)[J]. Journal of Biological Macromolecules,2019,141:431−443. doi: 10.1016/j.ijbiomac.2019.08.112
    [19]
    JIANG L, WANG W, WEN P, et al. Two water-soluble polysaccharides from mung bean skin: Physicochemical characterization, antioxidant and antibacterial activities[J]. Food Hydrocolloids,2020,100:105412. doi: 10.1016/j.foodhyd.2019.105412
    [20]
    TAHMOUZI S, NEJAT M R S. New infertility therapy effects of polysaccharides fromAlthaea officinalis leaf with emphasis on characterization, antioxidant and anti-pathogenic activity[J]. International Journal of Biological Macromolecules,2020,145:777−787. doi: 10.1016/j.ijbiomac.2019.12.224
    [21]
    GOTTLIEB H E, KOTLYAR V, NUDELMAN A. NMR chemical shifts of common laboratory solvents as trace impurities[J]. Journal of Organic Chemistry,1997,62(21):7512−7515. doi: 10.1021/jo971176v
    [22]
    YANG H, BAI J, MA C, et al. Degradation models, structure, rheological properties and protective effects on erythrocyte hemolysis of the polysaccharides from Ribes nigrum L[J]. International Journal of Biological Macromolecules,2020,165:738−746. doi: 10.1016/j.ijbiomac.2020.09.093
    [23]
    WANG L, ZHANG B, XIAO J, et al. Physicochemical, functional, and biological properties of water-soluble polysaccharides fromRosa roxburghii Tratt fruit[J]. Food Chemistry,2018,249:127−135. doi: 10.1016/j.foodchem.2018.01.011
    [24]
    SILA A, BAYAR N, GHAZALA I, et al. Water-soluble polysaccharides from agro-industrial by-products: functional and biological properties[J]. International Journal of Biological Macromolecules,2014,69:236−243. doi: 10.1016/j.ijbiomac.2014.05.052
    [25]
    李洁, 郭玉蓉, 窦姣, 等. 不同方法提取苹果肉渣果胶的流变学特性研究[C]//现代果业标准化示范区创建暨果树优质高效生产技术交流会论文汇编, 2015.

    LI Jie, GUO Yurong, DOU Jiao, et al. Study on rheological properties of pectin extracted from apple pulp residue by different methods [C]//Compilation of papers on the establishment of modern fruit industry standardization demonstration area and fruit tree high-quality and efficient production technology exchange, 2015
    [26]
    郝正祺. 绣球菌多糖结构鉴定, 流变凝胶学特性及其抗氧化和免疫功能的研究[D]. 晋中: 山西农业大学, 2018.

    HAO Zhengqi. Structural identification, rheological and gel characteristics, antioxidant and immune functions of hydrangea polysaccharides [D]. Jinzhong: Shanxi Agricultural University, 2018.
    [27]
    冯蕾. 决明子水溶性多糖的精细结构、构象特征及其流变行为研究 [D]. 南昌: 南昌大学, 2018.

    FENG Lei. Study on fine structure, conformational characteristics and rheological behavior of water-soluble polysaccharides from cassia seed [D]. Nanchang: Nanchang University, 2018
    [28]
    WANG P, ZHAO S, YANG B, et al. Anti-diabetic polysaccharides from natural sources: A review[J]. Carbohydrate Polymers,2016,148:86−97. doi: 10.1016/j.carbpol.2016.02.060
  • Cited by

    Periodical cited type(8)

    1. 吴梓菲,林胜楠,史芳芳,王兴雯,王志慧,王宁,史应武,罗明,郭文超,包慧芳. 生防贝莱斯芽胞杆菌JS6-1定殖动态与全基因组测序分析. 中国生物防治学报. 2025(02): 335-346 .
    2. 王春栋,袁丽芳,李廷刚,尹向田,刘其宝,韩星,蒋锡龙,魏彦锋. 葡萄病虫害生物防治研究进展. 中外葡萄与葡萄酒. 2025(03): 139-146 .
    3. 张尹强,郝建秀,赵远征,王东,周洪友. 棘孢木霉PT-29与枯草芽孢杆菌S-16共培养对马铃薯枯萎病的防控作用. 河南农业科学. 2024(03): 95-102 .
    4. 蒙耀,吴慧芳,魏琳,石晖琴,沈硕. 暹罗芽胞杆菌JZ1-4-10对马铃薯干腐病的抑菌作用及机理. 中国生物防治学报. 2024(03): 641-651 .
    5. 焦甜甜,沈凤英,王娇,刘晓宁,李星,李亚宁. 咯菌腈与解淀粉芽胞杆菌X-119复配对葡萄灰霉病的防效. 植物保护学报. 2024(03): 698-708 .
    6. 皮娜娜,王玺茜,罗建军,翁群芳. 贝莱斯芽孢杆菌防控植物病害的研究进展. 广东农业科学. 2024(06): 48-59 .
    7. 罗佑红,赵欣阳,蔡海滨,孟祥佳,周燚,涂敏. 树木伯克霍尔德氏菌DHR18诱导橡胶树抗病性相关防御酶分析. 热带作物学报. 2024(10): 2129-2137 .
    8. 杨星月,陆跃岭,金东林,王淑芳,焦豫良,杭新楠. 抗番茄早疫病海洋细菌221-11的鉴定及其生防效果评价. 植物医学. 2024(05): 18-27 .

    Other cited types(15)

Catalog

    Article Metrics

    Article views (209) PDF downloads (18) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return