CAI Shuai, GUO Qiushuang, LIU Yan, et al. Optimization of the Technological Conditions for Glycolic Acid Production by Gluconobacter frateurii Using Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(12): 138−145. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090342.
Citation: CAI Shuai, GUO Qiushuang, LIU Yan, et al. Optimization of the Technological Conditions for Glycolic Acid Production by Gluconobacter frateurii Using Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(12): 138−145. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090342.

Optimization of the Technological Conditions for Glycolic Acid Production by Gluconobacter frateurii Using Response Surface Methodology

More Information
  • Received Date: September 28, 2021
  • Available Online: April 17, 2022
  • The response surface methodology was employed to optimize the process conditions of Gluconobacter frateurii for producing glycolic acid. First, single factor test and Plackett-Burman test design were used to screen out the three main factors affecting the production of glycolic acid: Sorbitol concentration, yeast powder concentration, and ethylene glycol concentration. On this basis, the steepest climbing path method was used to approach the maximum response value range, and the response surface methodology was used to determine the interaction and optimal conditions between these main factors. The results showed that the optimization concentration were: Sorbitol 40.30 g/L, yeast powder 36.90 g/L, CaCO3 2.50 g/L, ethylene glycol 28.14 g/L, culture temperature 30 °C, pH7, inoculum size 10% (v/v), rotating speed 200 r/min, fermentation period 48 h. Under the optimized condition, the titer of glycolic acid reached 21.04 g/L. After three parallel experiments, the actual average titer was close to the predicted titer. The conversion rate of glycolic acid was increased by 28.25%, reaching 74.77%, and the productivity was 10.52 g/(L·d).
  • [1]
    刘旭, 尹国华, 王金花, 等. 羟基乙酸的合成与应用综述[J]. 山东化工,2016,45(2):46−48. [LIU X, YIN G H, WANG J H, et al. The synthesis methods and application of glycolic acid[J]. Shandong Chemical Industry,2016,45(2):46−48. doi: 10.3969/j.issn.1008-021X.2016.02.014

    LIU X, YIN G H, WANG J H, et al. The synthesis methods and application of glycolic acid[J]. Shandong Chemical Industry, 2016, 45(2): 46-48. doi: 10.3969/j.issn.1008-021X.2016.02.014
    [2]
    王莉, 张晓阳. 羟基乙酸的市场分析与发展前景[J]. 河北化工,2004(3):24−25. [WANG L, ZHANG X Y. Market analysis and development prospect of glycollic acid[J]. Hebei Chemical Engineering and Industry,2004(3):24−25.

    WANG L, ZHANG X Y. Market analysis and development prospect of glycollic acid[J]. Hebei Chemical Engineering and Industry, 2004(3): 24-25.
    [3]
    李倩, 魏利华, 张辰亮, 等. 羟基乙酸的合成及应用[J]. 精细与专用化学品,2014,22(1):42−46. [LI Q, WEI L H, ZHANG C L, et al. Synthesis and application of hydroxyacetic acid[J]. Fine and Specialty Chemicals,2014,22(1):42−46. doi: 10.3969/j.issn.1008-1100.2014.01.011

    LI Q, WEI L H, ZHANG C L, et al. Synthesis and application of hydroxyacetic acid[J]. Fine and Specialty Chemicals, 2014, 22(1): 42-46. doi: 10.3969/j.issn.1008-1100.2014.01.011
    [4]
    李峰, 杨仲春. 羟基乙酸的合成与应用[J]. 精细与专用化学品,2006(9):1−6. [LI F, YANG Z C. Synthesis and application of glycollic acid[J]. Fine and Specialty Chemicals,2006(9):1−6. doi: 10.3969/j.issn.1008-1100.2006.09.001

    LI F, YANG Z C. Synthesis and application of glycollic acid[J]. Fine and Specialty Chemicals, 2006(9): 1-6. doi: 10.3969/j.issn.1008-1100.2006.09.001
    [5]
    HUA X, CAO R, ZHOU X, et al. Integrated process for scalable bioproduction of glycolic acid from cell catalysis of ethylene glycol[J]. Bioresource Technology,2018,268:402−407. doi: 10.1016/j.biortech.2018.08.021
    [6]
    HUA X, DU G L, XU Y. Cost-practical of glycolic acid bioproduction by immobilized whole-cell catalysis accompanied with compressed oxygen supplied to enhance mass transfer[J]. Bioresource Technology,2019,283:326−331. doi: 10.1016/j.biortech.2019.03.094
    [7]
    WEI G D, YANG X P, GAN T L, et al. High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production[J]. Journal of Industrial Microbiology & Biotechnology,2009,36(8):1029−1034.
    [8]
    GAO J M, NIKLASON L, LANGER R. Surface hydrolysis of poly (glycolic acid) meshes increases the seeding density of vascular smooth muscle cells[J]. Journal of Biomedical Materials Research,2015,42(3):417−424.
    [9]
    HE Y C, LIU Y Y, MA C L, et al. Modified ferric hydroxamate spectrophotometry for assaying glycolic acid from the hydrolysis of glycolonitrile by Rhodococcus sp. CCZU10-1[J]. Biotechnology & Bioprocess Engineering,2011,16(5):901.
    [10]
    JO D J, SEOK J K, KIM S Y, et al. Human skin-depigmenting effects of resveratryl triglycolate, a hybrid compound of resveratrol and glycolic acid[J]. International Journal of Cosmetic Science,2018,40(3):256−262. doi: 10.1111/ics.12458
    [11]
    GASPAR T, JESÚS G, LAURA S, et al. Value of glycolic acid analysis in ethylene glycol poisoning: A clinical case report and systematic review of the literature[J]. Forensic Science International,2018,290:9−14. doi: 10.1016/j.forsciint.2018.07.007
    [12]
    田克胜, 王保伟, 许根慧. 乙醇酸的合成及应用[J]. 天然气化工,2006,31(60):60−63. [TIAN K S, WANG B W, XU G H. Synthesis and application of glycolic acid[J]. Natural Gas Chemical Industry,2006,31(60):60−63.

    TIAN K S, WANG B W, XU G H. Synthesis and application of glycolic acid[J]. Natural Gas Chemical Industry, 2006, 31(60): 60-63.
    [13]
    袁彩彩. 乙醇酸及聚乙醇酸的合成研究[D]. 郑州: 郑州大学, 2019

    YUAN C C. Synthesis of glycolic acid and polyglycolic acid[D]. Zhengzhou: Zhengzhou University, 2019.
    [14]
    李宇展, 刘伟, 顾登平. 草酸电解还原研制乙醇酸[J]. 河北师范大学学报(自然科学版),2003,27(4):385−387. [LI Y Z, LIU W, GU D P. Electroreduction oxalic acid to glycollic acid[J]. Journal of Hebei Normal University (Natural Science Edition),2003,27(4):385−387.

    LI Y Z, LIU W, GU D P. Electroreduction oxalic acid to glycollic acid[J]. Journal of Hebei Normal University (Natural Science Edition), 2003, 27(4): 385-387.
    [15]
    ER VALLE-GONZÁLEZ, JACKMAN J A, BO K Y, et al. pH-dependent antibacterial activity of glycolic acid: Implications for anti-acne formulations[J]. Scientific Reports,2020,10(1):2045−2322. doi: 10.1038/s41598-020-58985-6
    [16]
    TOOSI S, NADERI-MESHKIN H, KALALINIA F, et al. Bone defect healing is induced by collagen sponge/polyglycolic acid[J]. Journal of Materials Science Materials in Medicine,2019,30(3):33. doi: 10.1007/s10856-019-6235-9
    [17]
    LIU T T, SU W C, CHEN Q X, et al. The inhibitory kinetics and mechanism of glycolic acid on lipase[J]. Journal of Biomolecular Structure and Dynamics,2020,38(7):2021−2028. doi: 10.1080/07391102.2019.1645732
    [18]
    张秀芳, 王克冰, 闫晓霖, 等. 甲醛与甲酸甲酯偶联合成乙醇酸甲酯及钴助剂对反应性能的影响[J]. 内蒙古农业大学学报,2009,30(3):198−202. [ZHANG X F, WANG K B, YAN X L, et al. Influence of additive cobalt compounds on the coupling reaction of rofmaldehyde and methyl formate to form methyl glycolate[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition),2009,30(3):198−202.

    ZHANG X F, WANG K B, YAN X L, et al. Influence of additive cobalt compounds on the coupling reaction of rofmaldehyde and methyl formate to form methyl glycolate[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2009, 30(3): 198-202.
    [19]
    廖川平. 从乙二醛经康尼查罗反应合成羟基乙酸的新方法[J]. 合成化学,2008,16(4):470−471. [LIAO C P. A new method of synthesizing glycolic acid from glyoxal by cannizzaro[J]. Journal of Synthetic Chemistry,2008,16(4):470−471. doi: 10.3969/j.issn.1005-1511.2008.04.027

    LIAO C P. A new method of synthesizing glycolic acid from glyoxal by cannizzaro[J]. Journal of Synthetic Chemistry, 2008, 16(4): 470-471. doi: 10.3969/j.issn.1005-1511.2008.04.027
    [20]
    赵林林, 刘华庆, 潘巧, 等. 催化歧化法合成羟基乙酸[J]. 精细石油化工,2013,30(1):21−23. [ZHAO L L, LIU H Q, PAN Q, et al. Synthesis of glycolic acid by disproportationation reaction of glyoxal[J]. Speciality Petrochemicals,2013,30(1):21−23. doi: 10.3969/j.issn.1003-9384.2013.01.006

    ZHAO L L, LIU H Q, PAN Q, et al. Synthesis of glycolic acid by disproportationation reaction of glyoxal[J]. Speciality Petrochemicals, 2013(1): 21-23. doi: 10.3969/j.issn.1003-9384.2013.01.006
    [21]
    ZHOU X, ZHOU X, XU Y. Improvement of fermentation performance of Gluconobacter oxydans by combination of enhanced oxygen mass transfer in compressed-oxygen-supplied sealed system and cell-recycle technique[J]. Bioresource Technology,2017,244(1):1137−1141.
    [22]
    KATAOKA M, SASAKI MIÉ, HIDALGO A R G D, et al. Glycolic acid production using ethylene glycol-oxidizing microorganisms[J]. Journal of the Agricultural Chemical Society of Japan,2001,65(10):2265−2270.
    [23]
    WEI G D, YANG X P, ZHOU W Y, et al. Adsorptive bioconversion of ethylene glycol to glycolic acid by Gluconobacter oxydans DSM 2003[J]. Biochemical Engineering Journal,2009,47(1):127−131.
    [24]
    李华, 刘宇鹏, 孙杨, 等. 一株高产二羟基丙酮菌株的筛选及鉴定[J]. 工业微生物,2013,43(4):23−28. [LI H, LIU Y P, SUN Y, et al. Isolation and indentification of a strain producing high 1,3-dihydroxyacetone[J]. Industrial Microbiology,2013,43(4):23−28. doi: 10.3969/j.issn.1001-6678.2013.04.004

    LI H, LIU Y P, SUN Y, et al. Isolation and indentification of a strain producing high 1, 3-dihydroxyacetone[J]. Industrial Microbiology, 2013, 43(4): 23-28. doi: 10.3969/j.issn.1001-6678.2013.04.004
    [25]
    方亚坤, 靳魁奇, 刘宇鹏. 离子排斥色谱法分析发酵液中甘油酸等代谢产物[J]. 食品与发酵工业,2015,41(7):171−174. [FANG Y K, JIN K Q, LIU Y P. Determination of glyceric acid and other metabolites in fermentation broth by ion-exclusion liquid chromatography[J]. Food and Fermentation Industries,2015,41(7):171−174.

    FANG Y K, JIN K Q, LIU Y P. Determination of glyceric acid and other metabolites in fermentation broth by ion-exclusion liquid chromatography[J]. Food and Fermentation Industries, 2015, 41(7): 171-174.
    [26]
    ELAZAZY M S, EL-HAMSHARY M, SAKR M, et al. Plackett-burman and box-behnken designs as chemometric tools for micro-determination of l-ornithine science direct[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy,2017,193:397.
    [27]
    MATHUR G, MATHUR A, SHARMA B M, et al. Enhanced production of laccase from Coriolus sp. using plackett-burman design[J]. Journal of Pharmacy Research,2013,6(1):151−154. doi: 10.1016/j.jopr.2012.11.031
    [28]
    李世闯, 蔡帅, 郭秋爽, 等. 响应面法优化游离细胞法生产雄烯二酮初探[J]. 食品工业科技,2020,41(21):105−109. [LI S C, CAI S, GUO Q S. Optimization of androstenedione production by free cell method using response surface methodology[J]. Science and Technology of Food Industry,2020,41(21):105−109.

    LI S C, CAI S, GUO Q S. Optimization of androstenedione production by free cell method using response surface methodology[J]. Science and Technology of Food Industry, 2020, 41(21): 105-109.
    [29]
    SREEDHARAN A, ONG S T. Combination of plackett burman and response surface methodology experimental design to optimize malachite green dye removal from aqueous environment[J]. Chemical Data Collections,2020,25:100317. doi: 10.1016/j.cdc.2019.100317
    [30]
    AGARABI C D, CHAVEZ B K, LUTE S C, et al. Exploring the linkage between cell culture process parameters and downstream processing utilizing a plackett-burman design for a model monoclonal antibody[J]. Biotechnology Progress,2017,33(1):163−170. doi: 10.1002/btpr.2402
    [31]
    胡栋, 柯灵超, 张敬宇, 等. 响应面法设计优化阿维菌素化学合成发酵培养基[J]. 中国抗生素杂志,2018,43(8):1055−1061. [HU D, KE L C, ZHANG J Y, et al. Development and optimization of a fermentation chemically defined medium composition for the production of avermectins by response surface methodology[J]. Chinese Journal of Antibiotics,2018,43(8):1055−1061. doi: 10.3969/j.issn.1001-8689.2018.08.020

    HU D, KE L C, ZHANG J Y, et al. Development and optimization of a fermentation chemically defined medium composition for the production of avermectins by response surface methodology[J]. Chinese Journal of Antibiotics, 2018, 43(8): 1055-1061. doi: 10.3969/j.issn.1001-8689.2018.08.020
    [32]
    孙文, 刘倩倩, 胡彦婷, 等. 响应面法优化短短芽孢杆菌ch2-22的发酵工艺[J]. 微生物学杂志,2017,37(6):62−69. [SUN W, LIU Q Q, HU Y T, et al. Response surface methodology to optimize fermentation technology of Brevibacillus brevis ch2-22[J]. Journal of Microbiology,2017,37(6):62−69. doi: 10.3969/j.issn.1005-7021.2017.06.011

    SUN W, LIU Q Q, HU Y T, et al. Response surface methodology to optimize fermentation technology of Brevibacillus brevis ch2-22[J]. Journal of Microbiology, 2017, 37(6): 62-69. doi: 10.3969/j.issn.1005-7021.2017.06.011
    [33]
    项任鑫, 杨小虎, 方佳双, 等. 响应面法优化链霉菌HY6-S36产星孢菌素的发酵条件[J]. 中国抗生素杂志,2021,46(8):749−755. [XIANG R X, YANG X H, FANG J S, et al. Optimization fermentation conditions of staursporine from Streptomyces sp. HY6-S36 by response surface methodology[J]. Chinese Journal of Antibiotics,2021,46(8):749−755. doi: 10.3969/j.issn.1001-8689.2021.08.005

    XIANG R X, YANG X H, FANG J S, et al. Optimization fermentation conditions of staursporine from Streptomyces sp. HY6-S36 by response surface methodology[J]. Chinese Journal of Antibiotics, 2021, 46(8): 749-755. doi: 10.3969/j.issn.1001-8689.2021.08.005
    [34]
    雷蕾, 张莉, 孟祥红. 响应面分析法在海洋生防细菌变形斑沙雷氏菌增殖培养基优化中的应用[J]. 中国农学通报,2016,32(17):25−34. [LEI L, ZHANG L, MENG X H. Optimization of medium composition for acquiring the max growth biomass of a marine bio-control Bacteria serratia proteamaculans by response surface methodology[J]. Chinese Agricultural Science Bulletin,2016,32(17):25−34. doi: 10.11924/j.issn.1000-6850.casb16010057

    LEI L, ZHANG L, MENG X H. Optimization of medium composition for acquiring the max growth biomass of a marine bio-control Bacteria serratia proteamaculans by response surface methodology[J]. Chinese Agricultural Science Bulletin, 2016, 32(17): 25-34. doi: 10.11924/j.issn.1000-6850.casb16010057
  • Cited by

    Periodical cited type(2)

    1. 阮斯佳,赵欣欣,王燕,柳李旺,屠康,彭菁. 基于响应面和人工神经网络-遗传算法优化鲜切萝卜光动力杀菌工艺. 南京农业大学学报. 2023(06): 1196-1205 .
    2. 贺弘扬. 融合径向基神经网络和遗传算法的翻板钢水闸门优化. 粘接. 2022(12): 133-136 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (288) PDF downloads (36) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return