CAI Aili, HUANG Mingyong, WANG Zheng, et al. Optimization of the Enzymatic Acylation Reaction Conditions of Vitis davidii Malvidin[J]. Science and Technology of Food Industry, 2022, 43(14): 171−177. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090328.
Citation: CAI Aili, HUANG Mingyong, WANG Zheng, et al. Optimization of the Enzymatic Acylation Reaction Conditions of Vitis davidii Malvidin[J]. Science and Technology of Food Industry, 2022, 43(14): 171−177. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090328.

Optimization of the Enzymatic Acylation Reaction Conditions of Vitis davidii Malvidin

More Information
  • Received Date: September 27, 2021
  • Available Online: May 16, 2022
  • In order to increase the structural stability of anthocyanins, taking Vitis davidii malvidin as sample and the lipase CAL-B as catalyst, the effects of reaction time, temperature, and substrate molar ratio on enzymatic acylation were investigated. Based on the single factor experiments and taking the acylation rate as the response value, a response surface optimization experiment was designed to obtain the optimal process parameters for the enzymatic acylation reaction of Vitis davidii malvidin. Results showed that, the optimized parameters were as follows: The reaction time was 43 h, reaction temperature was 54 °C, substrate molar ratio was 1:24. Under these conditions, the acylation rate of malvidin was 49.92%±0.12%, this paper would provide important ideas for the stabilization and industrial production of Vitis davidii malvidin.
  • [1]
    石雪晖, 王益志, 陈祖玉, 等. 湖南刺葡萄植物学性状及抗病性研究初报[J]. 中外葡萄与葡萄酒,2002(2):22−24. [WANG Y Z, CHEN Z Y, YANG G S, et al. The preliminary study on the botanical character and the disease resistance of Hunan beiergrape[J]. Sino-Overseas Grapevine & Wine,2002(2):22−24. doi: 10.3969/j.issn.1004-7360.2002.02.007

    WANG Y Z, CHEN Z Y, YANG G S, et al. The preliminary study on the botanical character and the disease resistance of Hunan beiergrape[J]. Sino-Overseas Grapevine & Wine, 2002(2): 22-24. doi: 10.3969/j.issn.1004-7360.2002.02.007
    [2]
    陈婷, 刘鑫铭, 蔡盛华, 等. 刺葡萄种质资源研究进展[J]. 中国农学通报,2017,33(1):52−56. [CHEN T, LIU X M, CAI S H, et al. Germplasm resources of Vitis davidii: Research advances[J]. Chinese Agricultural Science Bulletin,2017,33(1):52−56. doi: 10.11924/j.issn.1000-6850.casb16090118

    CHEN T, LIU X M, CAI S H, et al. Germplasm resources of Vitis davidii: Research advances[J]. Chinese Agricultural Science Bulletin, 2017, 33(1): 52-56. doi: 10.11924/j.issn.1000-6850.casb16090118
    [3]
    周敏. 刺葡萄矿质营养变化规律与钾对果实糖分积累的影响研究[D]. 长沙: 湖南农业大学, 2017.

    ZHOU M. Research on nutrients change rule of Vitis davidii Foёx. and influence of potassium to fruit sugar accumulation[D]. Changsha: Hunan Agricultural University, 2017.
    [4]
    KHALIFA I, XIA D, DUTTA K, et al. Mulberry anthocyanins exert anti-AGEs effects by selectively trapping glyoxal and structural-dependently blocking the lysyl residues of beta-lactoglobulins[J]. Bioorganic Chemistry,2020:96.
    [5]
    SANG J, ZHANG Y, SANG J, et al. Anthocyanins from Nitraria tangutorun: Qualitative and quantitative analyses, antioxidant and anti-inflammatory activities and their stabilities as affected by some phenolic acids[J]. Journal of Food Measurement and Characterization,2019,13(1):421−430. doi: 10.1007/s11694-018-9956-4
    [6]
    JIANG T, SHUAI X Y, LI J, et al. Protein-bound anthocyanin compounds of purple sweet potato ameliorate hyperglycemia by regulating hepatic glucose metabolism in high-fat diet/streptozotocin-induced diabetic mice[J]. Journal of Agricultural and Food Chemistry,2020,68(6):1596−1608. doi: 10.1021/acs.jafc.9b06916
    [7]
    ZHANG N, JING P. Anthocyanins in Brassicaceae: Composition, stability, bioavailability, and potential health benefits[J]. Critical Reviews in Food Science and Nutrition,2020:1−15.
    [8]
    常影, 杨晓雪, 焦岩, 等. 桑葚花色苷纳米脂质体的修饰及稳定性研究[J]. 食品科技,2020,45(12):251−257. [CHANG Y, YANG X X, JIAO Y, et al. Study on modification and stability of mulberry anthocyanin nanoliposomes[J]. Food Science and Technology,2020,45(12):251−257.

    CHANG Y, YANG X X, JIAO Y, et al. Study on modification and stability of mulberry anthocyanin nanoliposomes[J]. Food Science and Technology, 2020, 45(12): 251-257.
    [9]
    李泉岑, 王佳奇, 伍子涵, 等. 天然植物色素稳定性及其应用研究进展[J]. 现代食品,2020(22):59−62. [LI Q C, WANG J Q, WU Z H, et al. Research progress on the stability and application of natural plant pigments[J]. Modern Food,2020(22):59−62.

    LI Q C, WANG J Q, WU Z H, et al. Research progress on the stability and application of natural plant pigments[J]. Modern Food, 2020(22): 59-62.
    [10]
    CARRILLO C, KAMILOGLU S, GROOTAERT C, et al. Co-ingestion of black carrot and strawberry. Effects on anthocyanin stability, bioaccessibility and uptake[J]. Foods,2020,9(11):1595. doi: 10.3390/foods9111595
    [11]
    李金星, 胡志和, 马立志, 等. 蓝莓加工过程中出汁率及花青素的稳定性[J]. 食品科学,2014,35(2):120−125. [LI J X, HU Z H, MA L Z, et al. Juice yield and anthocyanins stability during the processing of blueberry[J]. Food Science,2014,35(2):120−125. doi: 10.7506/spkx1002-6630-201402022

    LI J X, HU Z H, MA L Z, et al. Juice yield and anthocyanins stability during the processing of blueberry[J]. Food Science, 2014, 35(2): 120-125. doi: 10.7506/spkx1002-6630-201402022
    [12]
    WU H Y, YANG K M, CHIANG P Y. Roselle anthocyanins: Antioxidant properties and stability to heat and pH[J]. Molecules,2018,23(6):1357. doi: 10.3390/molecules23061357
    [13]
    LI N, MA D, ZONG M H. Enhancing the activity and regioselectivity of lipases for 3′-benzoylation of floxuridine and its analogs by using ionic liquid-containing systems[J]. Journal of Biotechnology,2008,133(1):103−109. doi: 10.1016/j.jbiotec.2007.09.003
    [14]
    KAMIYA H, YANASE E, NAKATSUKA S. Novel oxidation products of cyanidin 3-O-glucoside with 2, 2′-azobis-(2, 4-dimethyl) valeronitrile and evaluation of anthocyanin content and its oxidation in black rice[J]. Food Chemistry,2014,155:221−226. doi: 10.1016/j.foodchem.2014.01.077
    [15]
    BROWNMILLER C, HOWARD L R, PRIOR R L. Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blueberry products[J]. Journal of Food Science,2008,56(3):689−695.
    [16]
    ZHAO C L, CHEN Z J, BAI X S, et al. Structure–activity relationships of anthocyanidin glycosylation[J]. Molecular Diversity,2014,18(3):687−700. doi: 10.1007/s11030-014-9520-z
    [17]
    孙建霞, 张燕, 胡小松, 等. 花色苷的结构稳定性与降解机制研究进展[J]. 中国农业科学,2009,42(3):996−1008. [SUN J X, ZHANG Y, HU X S, et al. Structural stability and degradation mechanisms of anthocyanins[J]. Scientia Agricultura Sinica,2009,42(3):996−1008. doi: 10.3864/j.issn.0578-1752.2009.03.031

    SUN J X, ZHANG Y, HU X S, et al. Structural stability and degradation mechanisms of anthocyanins[J]. Scientia Agricultura Sinica, 2009, 42(3): 996-1008. doi: 10.3864/j.issn.0578-1752.2009.03.031
    [18]
    GUIMARÃES M, MATEUS N, DE FREITAS V, et al. Improvement of the color stability of cyanidin-3-glucoside by fatty acid enzymatic acylation[J]. Journal of Agricultural and Food Chemistry,2018,66(38):10003−10010. doi: 10.1021/acs.jafc.8b03536
    [19]
    崔清慧. 蓝莓花色苷的酰化及抑制Hep G2和Caco-2细胞增殖活性的研究[D]. 北京: 北京林业大学, 2016: 12−40.

    CUI Q H. Acylation of blueberry anthocyanin and its inhibitory activity of HepG2 and Caco-2 cells[D]. Beijing: Beijing Forestry University, 2016: 12−40.
    [20]
    洪森辉, 黄冰晴, 张晶怡, 等. 越橘花色苷的酰化修饰及其稳定性改善研究[J]. 食品与发酵工业,2021,47(16):84−89. [HONG S H, HUANG B Q, ZHANG J Y, et al. Improvement the stability of the bilberry anthocyanins through acylating modification[J]. Food and Fermentation Industries,2021,47(16):84−89.

    HONG S H, HUANG B Q, ZHANG J Y, et al. Improvement the stability of the bilberry anthocyanins through acylating modification[J]. Food and Fermentation Industries, 2021, 47(16): 84-89.
    [21]
    HOWELL A B. Clinical evidence supporting cranberry as a complementary approach to Helicobacter pylori management[J]. Food Frontiers,2020,1(3):329−331. doi: 10.1002/fft2.47
    [22]
    周萍, 郑洁. 花色苷改性及应用研究进展[J]. 食品科学,2021,42(3):346−354. [ZHOU P, ZHENG J. Modification of anthocyanins for extended application: A review[J]. Food Science,2021,42(3):346−354. doi: 10.7506/spkx1002-6630-20200306-092

    ZHOU P, ZHENG J. Modification of anthocyanins for extended application: A review [J]. Food Science, 2021, 42(3): 346-354. doi: 10.7506/spkx1002-6630-20200306-092
    [23]
    卢晓蕊, 武彦文, 欧阳杰, 等. 响应面法优化萝卜红色素酯化修饰条件的研究[J]. 食品与发酵工业,2008,34(7):71−76. [LU X R, WU Y W, OUYANG J, et al. Optimization of radish red esterification modification by quadratic regression[J]. Food and Fermentation Industries,2008,34(7):71−76.

    LU X R, WU Y W, OUYANG J, et al. Optimization of radish red esterification modification by quadratic regression[J]. Food and Fermentation Industries, 2008, 34(7): 71-76.
    [24]
    GUIMARAES M, PEREZ GREGORIO M, MATEUS N, et al. An efficient method for anthocyanins lipophilization based on enzyme retention in membrane systems[J]. Food Chemistry,2019:300.
    [25]
    CRUZ L, FERNANDES I, GUIMARAES M, et al. Enzymatic synthesis, structural characterization and antioxidant capacity assessment of a new lipophilic malvidin-3-glucoside-oleic acid conjugate[J]. Food and Function,2016,7(6):2754−2762. doi: 10.1039/C6FO00466K
    [26]
    CRUZ L, FERNANDES V C, ARAUJO P, et al. Synthesis, characterisation and antioxidant features of procyanidin B4 and malvidin-3-glucoside stearic acid derivatives[J]. Food Chemistry,2015,174:480−486. doi: 10.1016/j.foodchem.2014.11.062
    [27]
    YANG W, KORTESNIEMI M, YANG B, et al. Enzymatic acylation of anthocyanins isolated from alpine bearberry (Arctostaphylos alpina) and lipophilic properties, thermostability, and antioxidant capacity of the derivatives[J]. Journal of Agricultural and Food Chemistry,2018,66(11):2909−2916. doi: 10.1021/acs.jafc.7b05924
    [28]
    ERNANDEZ AULIS F, TORRES A, SANCHEZ MENDOZA E, et al. New acylated cyanidin glycosides extracted from underutilized potential sources: Enzymatic synthesis, antioxidant activity and thermostability[J]. Food Chemistry,2020:309.
    [29]
    朱勇生. 黑米花青素的分子修饰及其修饰产物的稳定性和益生元活性研究[D]. 合肥: 合肥工业大学, 2018: 14-50.

    ZHU Y S. Study on the molecular modification, activity and prebiotic activity of anthocyanins from black rice and prebiotic activity of anthocyanins from black rice and preparation of anthocyanins salts[D]. Hefei: Hefei University of Technology, 2018: 14-50.
    [30]
    ARDHAOUI M, FALCIMAIGNE A, OGNIER S, et al. Effect of acyl donor chain length and substitutions pattern on the enzymatic acylation of flavonoids[J]. Journal of Biotechnology,2004,110(3):265−272. doi: 10.1016/j.jbiotec.2004.03.003
    [31]
    王维茜, 邓洁红, 刘永红. 半制备型高效液相色谱法分离刺葡萄锦葵色素单体[J]. 食品科学,2016,37(18):71−76. [WANG W Q, DENG J H, LIU Y L. Preparation of monnmeric anthocyanins from Vitis davidii Foex by semi-preparative HPLC[J]. Food Science,2016,37(18):71−76. doi: 10.7506/spkx1002-6630-201618012

    WANG W Q, DENG J H, LIU Y L. Preparation of monnmeric anthocyanins from Vitis davidii Foex by semi-preparative HPLC[J]. Food Science, 2016, 37(18): 71-76. doi: 10.7506/spkx1002-6630-201618012
    [32]
    ARCUS V L, VAN DER KAMP M W, PUDNEY C R, et al. Enzyme evolution and the temperature dependence of enzyme catalysis[J]. Current Opinion in Structural Biology,2020,65:96−101. doi: 10.1016/j.sbi.2020.06.001
    [33]
    SABRIEH G, MARJAN H, ZOHREH H, et al. Immobilisation of lipase on the surface of magnetic nanoparticles and non-porous glass beads for regioselective acetylation of prednisolone[J]. IET Nanobiotechnology,2013,7(3):100−108. doi: 10.1049/iet-nbt.2012.0025
    [34]
    TENG H, MI Y, CAO H, et al. Enzymatic acylation of raspberry anthocyanin: Evaluations on its stability and oxidative stress prevention[J]. Food Chemistry,2022,372:130766. doi: 10.1016/j.foodchem.2021.130766
    [35]
    XU P, ZHENG G W, ZONG M H, et al. Recent progress on deep eutectic solvents in biocatalysis[J]. Bioresources and Bioprocessing,2017,4(1):34. doi: 10.1186/s40643-017-0165-5
  • Related Articles

    [1]CHEN Hao, YIN Junye, HAO Jianxiong, ZHAO Dandan. Research Progress on the Bioactivity and Mechanisms of Jujube Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(13): 342-351. DOI: 10.13386/j.issn1002-0306.2023070276
    [2]TANG Mengjia, LIU Qingqing, LIU Yanxin, WANG Yicui. Research Progress on Bioactivity and Product Development of Codonopsis pilosula Polysaccharide[J]. Science and Technology of Food Industry, 2022, 43(20): 464-470. DOI: 10.13386/j.issn1002-0306.2021100038
    [3]ZHOU Tiantian, ZHANG Hong, YUAN Wenpeng. Research Progress on Extraction, Purification and Biological Activity of Marine Peptides[J]. Science and Technology of Food Industry, 2022, 43(19): 419-426. DOI: 10.13386/j.issn1002-0306.2021090116
    [4]WANG Jialuan, ZHAO Fengyi, ZHANG Chunhong, WU Wenlong. Research Progress of Extraction, Purification and Bioactivity of Ellagic Acid[J]. Science and Technology of Food Industry, 2022, 43(13): 416-424. DOI: 10.13386/j.issn1002-0306.2021060276
    [5]YANG Maohui, ZHOU Xin, QIAO Zhengwen, ZHAO Chao, GONG Xiaojian, DENG Qingfang, CHEN Huaguo. Recent Advances in Polygonatum Polysaccharides: Extraction, Isolation, Purification and Bioactivities[J]. Science and Technology of Food Industry, 2022, 43(12): 407-416. DOI: 10.13386/j.issn1002-0306.2021060142
    [6]XU Wensi, ZHANG Mengyuan, LI Baihua, YANG Qifu, WEI Naqiang, YANG Pinhong, ZHOU Shunxiang. Research Progress of Protein Polypeptides Extraction and Bioactivities from Shrimp Processing By-products[J]. Science and Technology of Food Industry, 2021, 42(17): 432-438. DOI: 10.13386/j.issn1002-0306.2020080301
    [7]JI Xiao-long, YIN Ming-song, HOU Chun-yan, LIU Yan-qi. Recent Advances in Jujube(Zizyphus jujuba Mill.)Polysaccharides: Extraction,Isolation and Purification and Bioactivities[J]. Science and Technology of Food Industry, 2020, 41(23): 346-353,358. DOI: 10.13386/j.issn1002-0306.2020030038
    [8]LIU Chun-you, YIN Chao-min, HUANG Yong-chun, GENG Fang, YANG Feng, HUANG Cheng-du, ZHANG Kun-ming. Progress in extraction,separation and purification,structural characteristics and bioactivities of polysaccharides of passiflora edulis peel[J]. Science and Technology of Food Industry, 2018, 39(8): 335-340,351. DOI: 10.13386/j.issn1002-0306.2018.08.060
    [9]LIU Cai-fen, HAN Hao, JIN Wen-gang, LI Xin-sheng, JIANG Hai, CHEN Xiao-ling, LI Wen. Research status and prospects of anthocyanin compounds bioactivity[J]. Science and Technology of Food Industry, 2017, (16): 335-340. DOI: 10.13386/j.issn1002-0306.2017.16.063
    [10]ZHU Cai-ping, ZHAI Xi-chuan, ZHANG Xiao, LI Lin-qiang, ZHANG Qing-an, WU Xiao-xia, DENG Hong. Research progress in extraction,separation,purification and bioactivity of Pleurotus ostreatus polysaccharides[J]. Science and Technology of Food Industry, 2015, (06): 359-364. DOI: 10.13386/j.issn1002-0306.2015.06.070
  • Cited by

    Periodical cited type(11)

    1. 刘继艳,王冰,李超宇,于淼. 五味子非药用部位活性成分和药理作用研究进展. 中草药. 2024(09): 3179-3189 .
    2. 吴溪,许杨,吴德玲,赵想,汪孰敏,高家荣. 基于UPLC-Q-TRAP-MS分析养心安神药对酸枣仁-五味子配伍煎煮前后10个指标成分含量变化. 中华中医药学刊. 2024(05): 190-195 .
    3. 刘妍妍,毕秀霞,董林林,成亚亚,贾小杰,李洪超. 北五味子提取物基于TLR/NF-κB信号通路对老年失眠大鼠的干预效果. 中国老年学杂志. 2024(18): 4524-4528 .
    4. 刘伟,张昊,李新殿,李慧萍,李伟. 超高压提取法对五味子果实及藤茎中木脂素类成分含量的影响. 特产研究. 2024(06): 87-95 .
    5. 康心茹,刘立科,傅容湛. 百合水提物和乙醇提取物对小鼠睡眠的影响. 食品研究与开发. 2023(06): 51-56 .
    6. 万祥旭,黄笑然,周宝丽,王宇航,金志民. 五味子药用成分在鼠类生理生化及病理中的应用研究进展. 中南农业科技. 2023(03): 240-243 .
    7. 付路静,王海洋,黄九林,梁如,梅皓. 南五味子嫩芽香辣酱的研制. 食品工业. 2023(07): 56-61 .
    8. 郭文霞,郭佳琦,傅容湛. 绞股蓝珍珠粉胶囊对小鼠睡眠的改善作用. 中国兽医杂志. 2023(10): 144-149 .
    9. 张雪妍,朱翠玲,闫海峰,孔维远,李滟郦. 基于小陷胸汤在心血管疾病中的相关研究特点论精简经典名方研究现状. 上海中医药杂志. 2023(12): 27-31 .
    10. 董培良,刘柯萌,曹庆宇,陈元金,许天恩,韩华. 五藤片的成型工艺研究. 中医药导报. 2022(07): 59-63 .
    11. 李贺,陈红旭,牛胜男,陈建光. 五味子藤茎多糖小鼠经口最大耐受量的测定. 北华大学学报(自然科学版). 2022(06): 763-767 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (143) PDF downloads (8) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return