LI Cong, LI Yujie, LI Xiaozhan, et al. Research Progress on External Quality Detection and Classification Technology of Jujube Based on Machine Vision[J]. Science and Technology of Food Industry, 2022, 43(20): 447−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090322.
Citation: LI Cong, LI Yujie, LI Xiaozhan, et al. Research Progress on External Quality Detection and Classification Technology of Jujube Based on Machine Vision[J]. Science and Technology of Food Industry, 2022, 43(20): 447−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090322.

Research Progress on External Quality Detection and Classification Technology of Jujube Based on Machine Vision

More Information
  • Received Date: September 27, 2021
  • Available Online: August 08, 2022
  • In recent years, machine vision technology, which is fast, accurate, objective and nondestructive, has been widely used in the external quality detection of agricultural products to solve the problems of high cost and low efficiency in manual detection. In the process of processing and circulation of jujubes, external characteristics are important factors affecting their quality. Rapid and accurate detection of external quality of jujubes can effectively guarantee food quality and safety and improve production efficiency of enterprises. In this paper, the application of machine vision technology in the external quality detection of jujubes is reviewed. The characteristics, existing problems and development trend of machine vision inspection methods are summarized according to defects, size, texture, color and comprehensive external quality, which provides reference for the research and development of efficient and rapid detection and grading equipment of jujubes in China.
  • [1]
    苏彩霞, 郭凯勋, 刘晓红. 我国红枣产业的现状、存在问题及对策[J]. 果农之友,2020(2):39−41. [SU C X, GUO K X, LIU X H. Present situation, existing problems and countermeasures of Chinese jujube industry[J]. Fruit Growers' Friend,2020(2):39−41. doi: 10.3969/j.issn.1671-7759.2020.02.023
    [2]
    LEEMANS V, DESTAIN M F. A real-time grading method of apples based on features extracted from defects[J]. Journal of Food Engineering,2004,61(1):83−89. doi: 10.1016/S0260-8774(03)00189-4
    [3]
    梁宁. 基于机器视觉的红枣外观品质自动分选装置研制[D]. 咸阳: 西北农林科技大学, 2019

    LIANG N. Development of automatic sorting device for dried jujube appearance equality based on machine vision[D]. Xianyang: Northwest A&F University, 2019.
    [4]
    白依凡, 贺晓光, 何建国, 等. 红枣自动分级机的研究进展[J]. 宁夏工程技术,2016,15(1):88−92. [BAI Y F, HE X G, HE J G, et al. Research progresses of red jujube automatic grading machines[J]. Ningxia Engineering Technology,2016,15(1):88−92. doi: 10.3969/j.issn.1671-7244.2016.01.020
    [5]
    张惠, 贾首星, 郑炫, 等. 红枣各阶段分级设备应用现状[J]. 江苏农业科学,2014,42(2):341−343. [ZHANG H, JIA S X, ZHENG X, et al. Application and development of jujube grading equipment in each stage[J]. Jiangsu Agricultural Sciences,2014,42(2):341−343. doi: 10.3969/j.issn.1002-1302.2014.02.120
    [6]
    李运志. 基于机器视觉的红枣外观品质分级方法研究[D]. 咸阳: 西北农林科技大学, 2016: 1−13

    LI Y Z. Research on method to exterior quality grading of jujube based on machine vision technology[D]. Xianyang: Northwest A&F University, 2016: 1−13.
    [7]
    员凯. 红枣品质检测部分系统设计及分级软件研究[D]. 咸阳: 西北农林科技大学, 2016: 1−17

    YUAN K. Partial system and grading software of quality detection of jujube[D]. Xianyang: Northwest A&F University, 2016: 1−17.
    [8]
    刘民法. 基于机器视觉技术的红枣自动化分级机的结构设计研究[D]. 银川: 宁夏大学, 2015: 1−16

    LIU M F. Structure design study on the automated classifier of red jujubes based on machine vision technique[D]. Yinchuan: Ningxia University, 2015: 1−16.
    [9]
    LEEMANS V, MAGEIN H, DESTAIN M, et al. Automation and emerging technologies: On-line fruit grading according to their external quality using machine vision[J]. Biosystems Engineering,2002,83(No.4):397. doi: 10.1006/bioe.2002.0131
    [10]
    马学武, 何建国. 基于机器视觉红枣无损自动分级设备的研制[J]. 宁夏工程技术,2008(3):213−215. [MA X W, HE J G. Manufacture of red jujubes' non-destructive and automatic grading equipment based on machine vision[J]. Ningxia Engineering Technology,2008(3):213−215. doi: 10.3969/j.issn.1671-7244.2008.03.005
    [11]
    田绪顺, 李景彬, 坎杂, 等. 基于机器视觉的红枣双面检测分级装置设计[J]. 食品与机械,2012,28(5):138−140. [TIAN X, LI J B, KAN Z, et al. Structure design of the double-surfaced detection and grading device to red date based on machine vision[J]. Food & Machinery,2012,28(5):138−140. doi: 10.3969/j.issn.1003-5788.2012.05.036
    [12]
    王丽丽. 基于计算机视觉的哈密大枣无损检测分级技术及分级装置研究[D]. 石河子: 石河子大学, 2013

    WANG L L. Research of non-destructive grading technology and detection equipment for Hami big jujubes based on computer vision[D]. Shihezi: Shihezi University, 2013.
    [13]
    王松磊, 刘民法, 何建国, 等. 红枣自动快速无损检测分级机研究[J]. 农业机械学报,2014,45(9):79−83. [WANG S L, LIU M F, HE J G, et al. Study of rapid and automatic non-destructive testing grader for red jujubes[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(9):79−83. doi: 10.6041/j.issn.1000-1298.2014.09.013
    [14]
    王明, 于金莹, 胡雁翔, 等. 无损检测技术在鸡蛋品质检测中的应用研究进展[J]. 食品科技,2021,46(4):268−272. [WANG M, YU J Y, HU Y X, et al. Application of nondestructive testing technology in detection of egg quality[J]. Food Science and Technology,2021,46(4):268−272.
    [15]
    BENGIO Y, COURVILLE A, VINCENT P. Representation learning: A review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(8):1798−1828. doi: 10.1109/TPAMI.2013.50
    [16]
    HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904−1916. doi: 10.1109/TPAMI.2015.2389824
    [17]
    卢伟, 胡海阳, 王家鹏, 等. 基于卷积神经网络面部图像识别的拖拉机驾驶员疲劳检测[J]. 农业工程学报,2018,34(7):192−199. [LU W, HU H, WANG J P, et al. Tractor driver fatigue detection based on convolution neural network and facial image recognition[J]. Transactions of the CSAE,2018,34(7):192−199. doi: 10.11975/j.issn.1002-6819.2018.07.025
    [18]
    缪裕青, 邹巍, 刘同来, 等. 基于参数迁移和卷积循环神经网络的语音情感识别[J]. 计算机工程与应用,2019,55(10):135−140. [MIAO Y, ZOU W, LIU T L, et al. Speech emotion recognition model based on parameter transfer and convolutional recurrent neural network[J]. Computer Engineering and Applications,2019,55(10):135−140. doi: 10.3778/j.issn.1002-8331.1802-0089
    [19]
    刘慧, 张礼帅, 沈跃, 等. 基于改进SSD的果园行人实时检测方法[J]. 农业机械学报,2019,50(4):29−35. [LIU H, ZHANG L S, SHEN Y, et al. Real-time pedestrian detection in orchard based on improved SSD[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(4):29−35. doi: 10.6041/j.issn.1000-1298.2019.04.003
    [20]
    朱云, 凌志刚, 张雨强. 机器视觉技术研究进展及展望[J]. 图学学报, 2020, 41(6): 871−890

    ZHU Y, LIN Z G, ZHANG Y Q. Research progress and prospect of machine vision technology[J]. Journal of Graphics, 2020, 41(6): 871−890.
    [21]
    赵杰文, 刘少鹏, 邹小波, 等. 基于支持向量机的缺陷红枣机器视觉识别[J]. 农业机械学报,2008,39(3):113−115. [ZHAO J W, LIU S P, ZOU X B, et al. Recognition of defect Chinese dates by machine vision and support vector machine[J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(3):113−115.
    [22]
    海潮, 赵凤霞, 孙烁. 基于Blob分析的红枣表面缺陷在线检测技术[J]. 食品与机械,2018,34(1):126−129. [HAI C, ZHAO F X, SUN S. Research on online detection for jujube surface defects based on blob analysis[J]. Food & Machinery,2018,34(1):126−129. doi: 10.13652/j.issn.1003-5788.2018.01.025
    [23]
    李运志, QIANG Zhang, 陈弘毅, 等. 基于机器视觉的半干枣病害和裂纹识别研究[J]. 农机化研究,2016,38(8):120−125. [LI Y Z, QIANG Z, CHEN H Y, et al. Detection of diseases and cracks of semi - dried dates based on machine vision[J]. Journal of Agricultural Mechanization Research,2016,38(8):120−125.
    [24]
    张萌, 许敏. 红枣表面缺陷快速检测方法研究[J]. 江苏农业科学,2015,43(7):331−334. [ZHANG M, XU M. Study on fast inspection method of surface defect of red jujube[J]. Jiangsu Agricultural Sciences,2015,43(7):331−334.
    [25]
    WU L G, HE J G, LIU G S, et al. Detection of common defects on jujube using Vis-NIR and NIR hyperspectral imaging[J]. Postharvest Biology and Technology,2016,112:134−142. doi: 10.1016/j.postharvbio.2015.09.003
    [26]
    WANG J, NAKANO K, OHASHI S, et al. Detection of external insect infestations in jujube fruit using hyperspectral reflectance imaging[J]. Biosystems Engineering,2011(4):345−351.
    [27]
    杨志锐, 郑宏, 郭中原, 等. 基于网中网卷积神经网络的红枣缺陷检测[J]. 食品与机械,2020,36(2):140−145. [YANG Z R, ZHENG H, GUO Z Y, et al. Detection of jujube defects based on the neural network with network convolution[J]. Food & Machinery,2020,36(2):140−145.
    [28]
    方双, 赵凤霞, 楚松峰, 等. 基于多尺度卷积神经网络的缺陷红枣检测方法[J]. 食品与机械,2021,37(2):158−163. [FANG S, ZHAO F X, CHUN S F, et al. Defective jujube detection technology based on multi-scale convolutional neural network[J]. Food & Machinery,2021,37(2):158−163.
    [29]
    XU X H, ZHENG H, YOU C H, et al. Far-net: Feature-wise attention-based relation network for multilabel jujube defect classification[J]. Sensors,2021,21:E392. doi: 10.3390/s21020392
    [30]
    曾窕俊, 吴俊杭, 马本学, 等. 基于帧间路径搜索和E-CNN的红枣定位与缺陷检测[J]. 农业机械学报,2019,50(2):307−314. [ZENG T J, WU J H, MA B X, et al. Localization and defect detection of jujubes based on search of shortest path between frames and E-CNN model[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(2):307−314. doi: 10.6041/j.issn.1000-1298.2019.02.035
    [31]
    肖爱玲, 黄新成. 基于彩色分量的骏枣病虫害检测方法[J]. 农机化研究,2014,36(2):142−146. [XIAO A L, HUANG X C. The research of detection method on chinese datas with pests and diseases based on color component[J]. Journal of Agricultural Mechanization Research,2014,36(2):142−146. doi: 10.3969/j.issn.1003-188X.2014.02.036
    [32]
    王婉娇, 贺晓光, 王松磊, 等. 基于高光谱成像技术的灵武长枣常见缺陷检测[J]. 食品与机械,2015,31(3):62−65. [WANG W J, HE X G, WANG S L, et al. Detection of common defects in jujube fruit using hyperspectral imaging[J]. Food & Machinery,2015,31(3):62−65.
    [33]
    孙世鹏, 李瑞, 谢洪起, 等. 基于机器视觉的冬枣病害检测[J]. 农机化研究,2018,40(9):183−188. [SUN S P, LI R, XIE H Q, et al. Detection of winter jujube diseases based on machine vision[J]. Journal of Agricultural Mechanization Research,2018,40(9):183−188.
    [34]
    文怀兴, 王俊杰, 韩昉. 基于改进残差网络的红枣缺陷检测分类方法研究[J]. 食品与机械,2020,36(1):161−165. [WEN H X, WANG J J, HAN F. Research on defect detection and classification of jujube based on improved residual network[J]. Food & Machinery,2020,36(1):161−165.
    [35]
    JU J P, ZHENG H, XU X H, et al. Classification of jujube defects in small data sets based on transfer learning[J]. Neural Computing and Applications, 2022(34): 3385-3398.
    [36]
    王慧. 基于图像边缘检测的红枣分级方法[J]. 农机化研究,2018,40(10):231−234. [WANG H. Grading method of jujube based on image edge detection[J]. Journal of Agricultural Mechanization Research,2018,40(10):231−234. doi: 10.3969/j.issn.1003-188X.2018.10.044
    [37]
    李景彬, 邓向武, 坎杂, 等. 基于机器视觉的干制红枣大小分级方法研究[J]. 农机化研究,2014,36(2):55−59. [LI J B, DENG X W, KAN Z, et al. The method of automatic dried red jujube hierarchy based on machine vision[J]. Journal of Agricultural Mechanization Research,2014,36(2):55−59.
    [38]
    QI X X, MA B X, XIAO W D. On-line detection of Hami big dates' size and shape based on machine vision[J]. International Conference on Computer Distributed Control and Intelligent Environmental Monitoring,2011:96−102.
    [39]
    王艳, 木合塔尔·米吉提, 刘亚, 等. 基于机器视觉的鲜骏枣大小分级研究[J]. 农业科技与装备,2017(4):15−17. [WANG Y, MUHETAER M J T, LIU Y, et al. Research on fresh jun jujube size classification based on machine vision[J]. Agricultural Science & Technology and Equipment,2017(4):15−17.
    [40]
    程子龙, 许峰, 蒋馥蔓. 双目摄像头在识别物体大小方面的应用[J]. 中国新通信,2016,18(22):102−103. [CHEN Z L, XU F, JIANG F M. Application of binocular camera in identifying object size[J]. China New Telecommunications,2016,18(22):102−103. doi: 10.3969/j.issn.1673-4866.2016.22.086
    [41]
    柴春花, 黄智英, 李忠, 等. 红枣纹理分级方法的研究[J]. 中国农机化学报,2016,37(3):201−204. [CHAI C H, HUANG Z Y, LI Z, et al. Research on the texture classification method for red jujubes[J]. Journal of Chinese Agricultural Mechanization,2016,37(3):201−204.
    [42]
    张灵通, 李寿宁, 孙三民. 基于纹理南疆红枣外观品质应用研究[J]. 浙江农业学报,2016,28(6):1089−1093. [ZHANG L T, LI S N, SUN S M. Study on appearance quality classification based on detection of the striples of red jujube in Southern Xinjiang[J]. Acta Agriculturae Zhejiangensis,2016,28(6):1089−1093.
    [43]
    ZHANG J X, MA Q Q, LI W, et al. Feature extraction of date fruit wrinkle based on the watershed segmentation[J]. International Journal of Agricultural and Biological Engineering,2017(4):165−172.
    [44]
    罗秀芝, 马本学, 李小霞, 等. 基于卷积神经网络干制哈密大枣纹理分级[J]. 新疆农业科学,2018,55(12):2220−2227. [LUO X Z, MA B X, LI X X, et al. Research on the texture classification of dried Hami jujube based on convolutional neural network[J]. Xinjiang Agricultural Sciences,2018,55(12):2220−2227.
    [45]
    冯斌, 汪懋华. 基于颜色分形的水果计算机视觉分级技术[J]. 农业工程学报,2002(2):141−144. [FENG B, WANG M H. Computer vision classification of fruit based on fractal color[J]. Transactions of the CSAE,2002(2):141−144. doi: 10.3321/j.issn:1002-6819.2002.02.035
    [46]
    马翔, 何建国, 施健, 等. 基于嵌入式红枣颜色分级系统研究[J]. 宁夏工程技术,2015,14(2):107−110. [MA X, HE J G, SHI J, et al. Embedded based system of jujube color-grading[J]. Ningxia Engineering Technology,2015,14(2):107−110. doi: 10.3969/j.issn.1671-7244.2015.02.003
    [47]
    孙中国, 于复生, 殷盛江, 等. 基于机器视觉的冬枣生熟检测系统研究[J]. 机械科学与技术,2014,33(7):1071−1073. [SUN Z G, YU F S, YIN S J, et al. Study on the mature inspection of winter jujube based on machine vision[J]. Mechanical Science and Technology for Aerospace Engineering,2014,33(7):1071−1073. doi: 10.13433/j.cnki.1003-8728.2014.0726
    [48]
    詹映, 罗华平, 彭云发, 等. BP人工神经网络南疆红枣颜色分级方法研究[J]. 食品工业,2015,36(1):165−167. [ZHAN Y, LOU H P, PENG Y F, et al. Research of the BP artificial neural network in southern jujube color classification method[J]. The Food Industry,2015,36(1):165−167.
    [49]
    钟小华, 曹玉华, 张永清, 等. 基于机器视觉技术的红枣全表面信息无损分拣系统研究与实现[J]. 食品与机械,2017,33(5):114−118. [ZHONG X H, CAO Y H, ZHANG Y Q, et al. Research and implementation of the non-destructive sorting system for surface information of jujube based on machine vision technology[J]. The Food Industry,2017,33(5):114−118. doi: 10.13652/j.issn.1003-5788.2017.05.024
    [50]
    GANBOLD O, 于鸿彬, 李志鹏, 等. 基于图像处理的红枣分级检测方法设计[J]. 安徽农业科学, 2020, 48(5): 206−210

    GANBOLD O, YU H B, LI Z P, et al. Design of jujube-grading detection method based on image processing[J]. Journal of Anhui Agricultural Sciences, 2020, 48(5): 206−210.
    [51]
    李运志. 基于机器视觉的红枣外观品质分级方法研究[D]. 咸阳: 西北农林科技大学, 2016

    LI Y Z. Research on method to exterior quality grading of jujube based on machine vision technology[D]. Xianyang: Northwest A&F University, 2016.
  • Cited by

    Periodical cited type(1)

    1. 周良欢,康宁波,张宏博,瞿前进,张军. 真空预冷对鲜枸杞压缩力学性质的影响及有限元模拟. 食品与发酵工业. 2025(03): 225-233 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (246) PDF downloads (22) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return