Citation: | LI Cong, LI Yujie, LI Xiaozhan, et al. Research Progress on External Quality Detection and Classification Technology of Jujube Based on Machine Vision[J]. Science and Technology of Food Industry, 2022, 43(20): 447−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090322. |
[1] |
苏彩霞, 郭凯勋, 刘晓红. 我国红枣产业的现状、存在问题及对策[J]. 果农之友,2020(2):39−41. [SU C X, GUO K X, LIU X H. Present situation, existing problems and countermeasures of Chinese jujube industry[J]. Fruit Growers' Friend,2020(2):39−41. doi: 10.3969/j.issn.1671-7759.2020.02.023
|
[2] |
LEEMANS V, DESTAIN M F. A real-time grading method of apples based on features extracted from defects[J]. Journal of Food Engineering,2004,61(1):83−89. doi: 10.1016/S0260-8774(03)00189-4
|
[3] |
梁宁. 基于机器视觉的红枣外观品质自动分选装置研制[D]. 咸阳: 西北农林科技大学, 2019
LIANG N. Development of automatic sorting device for dried jujube appearance equality based on machine vision[D]. Xianyang: Northwest A&F University, 2019.
|
[4] |
白依凡, 贺晓光, 何建国, 等. 红枣自动分级机的研究进展[J]. 宁夏工程技术,2016,15(1):88−92. [BAI Y F, HE X G, HE J G, et al. Research progresses of red jujube automatic grading machines[J]. Ningxia Engineering Technology,2016,15(1):88−92. doi: 10.3969/j.issn.1671-7244.2016.01.020
|
[5] |
张惠, 贾首星, 郑炫, 等. 红枣各阶段分级设备应用现状[J]. 江苏农业科学,2014,42(2):341−343. [ZHANG H, JIA S X, ZHENG X, et al. Application and development of jujube grading equipment in each stage[J]. Jiangsu Agricultural Sciences,2014,42(2):341−343. doi: 10.3969/j.issn.1002-1302.2014.02.120
|
[6] |
李运志. 基于机器视觉的红枣外观品质分级方法研究[D]. 咸阳: 西北农林科技大学, 2016: 1−13
LI Y Z. Research on method to exterior quality grading of jujube based on machine vision technology[D]. Xianyang: Northwest A&F University, 2016: 1−13.
|
[7] |
员凯. 红枣品质检测部分系统设计及分级软件研究[D]. 咸阳: 西北农林科技大学, 2016: 1−17
YUAN K. Partial system and grading software of quality detection of jujube[D]. Xianyang: Northwest A&F University, 2016: 1−17.
|
[8] |
刘民法. 基于机器视觉技术的红枣自动化分级机的结构设计研究[D]. 银川: 宁夏大学, 2015: 1−16
LIU M F. Structure design study on the automated classifier of red jujubes based on machine vision technique[D]. Yinchuan: Ningxia University, 2015: 1−16.
|
[9] |
LEEMANS V, MAGEIN H, DESTAIN M, et al. Automation and emerging technologies: On-line fruit grading according to their external quality using machine vision[J]. Biosystems Engineering,2002,83(No.4):397. doi: 10.1006/bioe.2002.0131
|
[10] |
马学武, 何建国. 基于机器视觉红枣无损自动分级设备的研制[J]. 宁夏工程技术,2008(3):213−215. [MA X W, HE J G. Manufacture of red jujubes' non-destructive and automatic grading equipment based on machine vision[J]. Ningxia Engineering Technology,2008(3):213−215. doi: 10.3969/j.issn.1671-7244.2008.03.005
|
[11] |
田绪顺, 李景彬, 坎杂, 等. 基于机器视觉的红枣双面检测分级装置设计[J]. 食品与机械,2012,28(5):138−140. [TIAN X, LI J B, KAN Z, et al. Structure design of the double-surfaced detection and grading device to red date based on machine vision[J]. Food & Machinery,2012,28(5):138−140. doi: 10.3969/j.issn.1003-5788.2012.05.036
|
[12] |
王丽丽. 基于计算机视觉的哈密大枣无损检测分级技术及分级装置研究[D]. 石河子: 石河子大学, 2013
WANG L L. Research of non-destructive grading technology and detection equipment for Hami big jujubes based on computer vision[D]. Shihezi: Shihezi University, 2013.
|
[13] |
王松磊, 刘民法, 何建国, 等. 红枣自动快速无损检测分级机研究[J]. 农业机械学报,2014,45(9):79−83. [WANG S L, LIU M F, HE J G, et al. Study of rapid and automatic non-destructive testing grader for red jujubes[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(9):79−83. doi: 10.6041/j.issn.1000-1298.2014.09.013
|
[14] |
王明, 于金莹, 胡雁翔, 等. 无损检测技术在鸡蛋品质检测中的应用研究进展[J]. 食品科技,2021,46(4):268−272. [WANG M, YU J Y, HU Y X, et al. Application of nondestructive testing technology in detection of egg quality[J]. Food Science and Technology,2021,46(4):268−272.
|
[15] |
BENGIO Y, COURVILLE A, VINCENT P. Representation learning: A review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(8):1798−1828. doi: 10.1109/TPAMI.2013.50
|
[16] |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904−1916. doi: 10.1109/TPAMI.2015.2389824
|
[17] |
卢伟, 胡海阳, 王家鹏, 等. 基于卷积神经网络面部图像识别的拖拉机驾驶员疲劳检测[J]. 农业工程学报,2018,34(7):192−199. [LU W, HU H, WANG J P, et al. Tractor driver fatigue detection based on convolution neural network and facial image recognition[J]. Transactions of the CSAE,2018,34(7):192−199. doi: 10.11975/j.issn.1002-6819.2018.07.025
|
[18] |
缪裕青, 邹巍, 刘同来, 等. 基于参数迁移和卷积循环神经网络的语音情感识别[J]. 计算机工程与应用,2019,55(10):135−140. [MIAO Y, ZOU W, LIU T L, et al. Speech emotion recognition model based on parameter transfer and convolutional recurrent neural network[J]. Computer Engineering and Applications,2019,55(10):135−140. doi: 10.3778/j.issn.1002-8331.1802-0089
|
[19] |
刘慧, 张礼帅, 沈跃, 等. 基于改进SSD的果园行人实时检测方法[J]. 农业机械学报,2019,50(4):29−35. [LIU H, ZHANG L S, SHEN Y, et al. Real-time pedestrian detection in orchard based on improved SSD[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(4):29−35. doi: 10.6041/j.issn.1000-1298.2019.04.003
|
[20] |
朱云, 凌志刚, 张雨强. 机器视觉技术研究进展及展望[J]. 图学学报, 2020, 41(6): 871−890
ZHU Y, LIN Z G, ZHANG Y Q. Research progress and prospect of machine vision technology[J]. Journal of Graphics, 2020, 41(6): 871−890.
|
[21] |
赵杰文, 刘少鹏, 邹小波, 等. 基于支持向量机的缺陷红枣机器视觉识别[J]. 农业机械学报,2008,39(3):113−115. [ZHAO J W, LIU S P, ZOU X B, et al. Recognition of defect Chinese dates by machine vision and support vector machine[J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(3):113−115.
|
[22] |
海潮, 赵凤霞, 孙烁. 基于Blob分析的红枣表面缺陷在线检测技术[J]. 食品与机械,2018,34(1):126−129. [HAI C, ZHAO F X, SUN S. Research on online detection for jujube surface defects based on blob analysis[J]. Food & Machinery,2018,34(1):126−129. doi: 10.13652/j.issn.1003-5788.2018.01.025
|
[23] |
李运志, QIANG Zhang, 陈弘毅, 等. 基于机器视觉的半干枣病害和裂纹识别研究[J]. 农机化研究,2016,38(8):120−125. [LI Y Z, QIANG Z, CHEN H Y, et al. Detection of diseases and cracks of semi - dried dates based on machine vision[J]. Journal of Agricultural Mechanization Research,2016,38(8):120−125.
|
[24] |
张萌, 许敏. 红枣表面缺陷快速检测方法研究[J]. 江苏农业科学,2015,43(7):331−334. [ZHANG M, XU M. Study on fast inspection method of surface defect of red jujube[J]. Jiangsu Agricultural Sciences,2015,43(7):331−334.
|
[25] |
WU L G, HE J G, LIU G S, et al. Detection of common defects on jujube using Vis-NIR and NIR hyperspectral imaging[J]. Postharvest Biology and Technology,2016,112:134−142. doi: 10.1016/j.postharvbio.2015.09.003
|
[26] |
WANG J, NAKANO K, OHASHI S, et al. Detection of external insect infestations in jujube fruit using hyperspectral reflectance imaging[J]. Biosystems Engineering,2011(4):345−351.
|
[27] |
杨志锐, 郑宏, 郭中原, 等. 基于网中网卷积神经网络的红枣缺陷检测[J]. 食品与机械,2020,36(2):140−145. [YANG Z R, ZHENG H, GUO Z Y, et al. Detection of jujube defects based on the neural network with network convolution[J]. Food & Machinery,2020,36(2):140−145.
|
[28] |
方双, 赵凤霞, 楚松峰, 等. 基于多尺度卷积神经网络的缺陷红枣检测方法[J]. 食品与机械,2021,37(2):158−163. [FANG S, ZHAO F X, CHUN S F, et al. Defective jujube detection technology based on multi-scale convolutional neural network[J]. Food & Machinery,2021,37(2):158−163.
|
[29] |
XU X H, ZHENG H, YOU C H, et al. Far-net: Feature-wise attention-based relation network for multilabel jujube defect classification[J]. Sensors,2021,21:E392. doi: 10.3390/s21020392
|
[30] |
曾窕俊, 吴俊杭, 马本学, 等. 基于帧间路径搜索和E-CNN的红枣定位与缺陷检测[J]. 农业机械学报,2019,50(2):307−314. [ZENG T J, WU J H, MA B X, et al. Localization and defect detection of jujubes based on search of shortest path between frames and E-CNN model[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(2):307−314. doi: 10.6041/j.issn.1000-1298.2019.02.035
|
[31] |
肖爱玲, 黄新成. 基于彩色分量的骏枣病虫害检测方法[J]. 农机化研究,2014,36(2):142−146. [XIAO A L, HUANG X C. The research of detection method on chinese datas with pests and diseases based on color component[J]. Journal of Agricultural Mechanization Research,2014,36(2):142−146. doi: 10.3969/j.issn.1003-188X.2014.02.036
|
[32] |
王婉娇, 贺晓光, 王松磊, 等. 基于高光谱成像技术的灵武长枣常见缺陷检测[J]. 食品与机械,2015,31(3):62−65. [WANG W J, HE X G, WANG S L, et al. Detection of common defects in jujube fruit using hyperspectral imaging[J]. Food & Machinery,2015,31(3):62−65.
|
[33] |
孙世鹏, 李瑞, 谢洪起, 等. 基于机器视觉的冬枣病害检测[J]. 农机化研究,2018,40(9):183−188. [SUN S P, LI R, XIE H Q, et al. Detection of winter jujube diseases based on machine vision[J]. Journal of Agricultural Mechanization Research,2018,40(9):183−188.
|
[34] |
文怀兴, 王俊杰, 韩昉. 基于改进残差网络的红枣缺陷检测分类方法研究[J]. 食品与机械,2020,36(1):161−165. [WEN H X, WANG J J, HAN F. Research on defect detection and classification of jujube based on improved residual network[J]. Food & Machinery,2020,36(1):161−165.
|
[35] |
JU J P, ZHENG H, XU X H, et al. Classification of jujube defects in small data sets based on transfer learning[J]. Neural Computing and Applications, 2022(34): 3385-3398.
|
[36] |
王慧. 基于图像边缘检测的红枣分级方法[J]. 农机化研究,2018,40(10):231−234. [WANG H. Grading method of jujube based on image edge detection[J]. Journal of Agricultural Mechanization Research,2018,40(10):231−234. doi: 10.3969/j.issn.1003-188X.2018.10.044
|
[37] |
李景彬, 邓向武, 坎杂, 等. 基于机器视觉的干制红枣大小分级方法研究[J]. 农机化研究,2014,36(2):55−59. [LI J B, DENG X W, KAN Z, et al. The method of automatic dried red jujube hierarchy based on machine vision[J]. Journal of Agricultural Mechanization Research,2014,36(2):55−59.
|
[38] |
QI X X, MA B X, XIAO W D. On-line detection of Hami big dates' size and shape based on machine vision[J]. International Conference on Computer Distributed Control and Intelligent Environmental Monitoring,2011:96−102.
|
[39] |
王艳, 木合塔尔·米吉提, 刘亚, 等. 基于机器视觉的鲜骏枣大小分级研究[J]. 农业科技与装备,2017(4):15−17. [WANG Y, MUHETAER M J T, LIU Y, et al. Research on fresh jun jujube size classification based on machine vision[J]. Agricultural Science & Technology and Equipment,2017(4):15−17.
|
[40] |
程子龙, 许峰, 蒋馥蔓. 双目摄像头在识别物体大小方面的应用[J]. 中国新通信,2016,18(22):102−103. [CHEN Z L, XU F, JIANG F M. Application of binocular camera in identifying object size[J]. China New Telecommunications,2016,18(22):102−103. doi: 10.3969/j.issn.1673-4866.2016.22.086
|
[41] |
柴春花, 黄智英, 李忠, 等. 红枣纹理分级方法的研究[J]. 中国农机化学报,2016,37(3):201−204. [CHAI C H, HUANG Z Y, LI Z, et al. Research on the texture classification method for red jujubes[J]. Journal of Chinese Agricultural Mechanization,2016,37(3):201−204.
|
[42] |
张灵通, 李寿宁, 孙三民. 基于纹理南疆红枣外观品质应用研究[J]. 浙江农业学报,2016,28(6):1089−1093. [ZHANG L T, LI S N, SUN S M. Study on appearance quality classification based on detection of the striples of red jujube in Southern Xinjiang[J]. Acta Agriculturae Zhejiangensis,2016,28(6):1089−1093.
|
[43] |
ZHANG J X, MA Q Q, LI W, et al. Feature extraction of date fruit wrinkle based on the watershed segmentation[J]. International Journal of Agricultural and Biological Engineering,2017(4):165−172.
|
[44] |
罗秀芝, 马本学, 李小霞, 等. 基于卷积神经网络干制哈密大枣纹理分级[J]. 新疆农业科学,2018,55(12):2220−2227. [LUO X Z, MA B X, LI X X, et al. Research on the texture classification of dried Hami jujube based on convolutional neural network[J]. Xinjiang Agricultural Sciences,2018,55(12):2220−2227.
|
[45] |
冯斌, 汪懋华. 基于颜色分形的水果计算机视觉分级技术[J]. 农业工程学报,2002(2):141−144. [FENG B, WANG M H. Computer vision classification of fruit based on fractal color[J]. Transactions of the CSAE,2002(2):141−144. doi: 10.3321/j.issn:1002-6819.2002.02.035
|
[46] |
马翔, 何建国, 施健, 等. 基于嵌入式红枣颜色分级系统研究[J]. 宁夏工程技术,2015,14(2):107−110. [MA X, HE J G, SHI J, et al. Embedded based system of jujube color-grading[J]. Ningxia Engineering Technology,2015,14(2):107−110. doi: 10.3969/j.issn.1671-7244.2015.02.003
|
[47] |
孙中国, 于复生, 殷盛江, 等. 基于机器视觉的冬枣生熟检测系统研究[J]. 机械科学与技术,2014,33(7):1071−1073. [SUN Z G, YU F S, YIN S J, et al. Study on the mature inspection of winter jujube based on machine vision[J]. Mechanical Science and Technology for Aerospace Engineering,2014,33(7):1071−1073. doi: 10.13433/j.cnki.1003-8728.2014.0726
|
[48] |
詹映, 罗华平, 彭云发, 等. BP人工神经网络南疆红枣颜色分级方法研究[J]. 食品工业,2015,36(1):165−167. [ZHAN Y, LOU H P, PENG Y F, et al. Research of the BP artificial neural network in southern jujube color classification method[J]. The Food Industry,2015,36(1):165−167.
|
[49] |
钟小华, 曹玉华, 张永清, 等. 基于机器视觉技术的红枣全表面信息无损分拣系统研究与实现[J]. 食品与机械,2017,33(5):114−118. [ZHONG X H, CAO Y H, ZHANG Y Q, et al. Research and implementation of the non-destructive sorting system for surface information of jujube based on machine vision technology[J]. The Food Industry,2017,33(5):114−118. doi: 10.13652/j.issn.1003-5788.2017.05.024
|
[50] |
GANBOLD O, 于鸿彬, 李志鹏, 等. 基于图像处理的红枣分级检测方法设计[J]. 安徽农业科学, 2020, 48(5): 206−210
GANBOLD O, YU H B, LI Z P, et al. Design of jujube-grading detection method based on image processing[J]. Journal of Anhui Agricultural Sciences, 2020, 48(5): 206−210.
|
[51] |
李运志. 基于机器视觉的红枣外观品质分级方法研究[D]. 咸阳: 西北农林科技大学, 2016
LI Y Z. Research on method to exterior quality grading of jujube based on machine vision technology[D]. Xianyang: Northwest A&F University, 2016.
|
1. |
周良欢,康宁波,张宏博,瞿前进,张军. 真空预冷对鲜枸杞压缩力学性质的影响及有限元模拟. 食品与发酵工业. 2025(03): 225-233 .
![]() |