Citation: | LI Ying, CHEN Jingyao, ZHAO Junying, et al. Research Progress in Milk-derived Exosomes[J]. Science and Technology of Food Industry, 2022, 43(22): 406−413. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090317. |
[1] |
LI L, LI C, WANG S, et al. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype[J]. Cancer Research,2016,76(7):1770−1780. doi: 10.1158/0008-5472.CAN-15-1625
|
[2] |
HOSHINO A, COSTA S B, SHEN T L, et al. Tumour exosome integrins determine organotropic metastasis[J]. Nature,2015,527(7578):329−335. doi: 10.1038/nature15756
|
[3] |
THERY C, AMIGORENA S, RAPOSO G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids[J]. Current Protocols in Cell Biology,2006,30(1):3.22.
|
[4] |
ZHANG J, LI S, LI L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function[J]. Genomics, Proteomics & Bioinformatics,2015,13(1):17−24.
|
[5] |
HARDING C, STAHL H P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes[J]. Journal of Cell Biology,1983,97(2):329−339. doi: 10.1083/jcb.97.2.329
|
[6] |
PAN B T, JOHNSTONE R M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor[J]. Cell,1983,33(3):967−978. doi: 10.1016/0092-8674(83)90040-5
|
[7] |
JOHNSTONE R M, ADAM M, HAMMOND J R, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. Journal of Biological Chemistry,1987,262(19):9412−9420. doi: 10.1016/S0021-9258(18)48095-7
|
[8] |
VALADI H, EKSTRŐM K, BOSSIOS A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nature Cell Biology,2007,9(6):654−659. doi: 10.1038/ncb1596
|
[9] |
COLITTI M, SGORLON S, STEFANON B. Exosome cargo in milk as a potential marker of cow health[J]. J Dairy Res,2020,87(S1):1−5. doi: 10.1017/S0022029920000679
|
[10] |
VAN D P E, BOING A N, HARRISON P, et al. Classification, functions, and clinical relevance of extracellular vesicles[J]. Pharmacological Reviews,2012,64(3):676−705. doi: 10.1124/pr.112.005983
|
[11] |
KUMEDA, NAHOKO, OGAWA, et al. Characterization of membrane integrity and morphological stability of human salivary exosomes[J]. Biological and Pharmaceutical Bulletin,2017,40(8):1183−1191. doi: 10.1248/bpb.b16-00891
|
[12] |
SUGIMACHI K, MATSUMURA T, HIRATA H, et al. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation[J]. British Journal of Cancer,2015,112(3):532−538. doi: 10.1038/bjc.2014.621
|
[13] |
NILSSON J, SKOG J, NORDSTRAND A, et al. Prostate cancer-derived urine exosomes: A novel approach to biomarkers for prostate cancer[J]. British Journal of Cancer,2009,100(10):1603−1607. doi: 10.1038/sj.bjc.6605058
|
[14] |
VASHISHT M, RANI P, ONTERU S K, et al. Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro[J]. Applied Biochemistry and Biotechnology,2017,183(3):993−1007. doi: 10.1007/s12010-017-2478-4
|
[15] |
WOLF T, BAIER S R, ZEMPLENI J. The intestinal transport of bovine milk exosomes is mediated by endocytosis in human colon carcinoma Caco-2 cells and rat small intestinal IEC-6 cells[J]. The Journal of Nutrition,2015,145(10):2201−2206. doi: 10.3945/jn.115.218586
|
[16] |
IZUMI H, TSUDA M, SAYO Y, et al. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages[J]. Journal of Dairy Science,2015,98(5):2920−2933. doi: 10.3168/jds.2014-9076
|
[17] |
权素玉, 南雪梅, 蒋林树, 等. 动物外泌体的生物学功能研究进展[J]. 动物营养学报,2018,30(12):4786−4791. [QUAN S Y, NAN X M, JIANG L S, et al. Advances in biological functions of animal exosomes[J]. Chinese Journal of Animal Nutrition,2018,30(12):4786−4791. doi: 10.3969/j.issn.1006-267x.2018.12.003
|
[18] |
CAROLINA D, GOREHAM R V, BECH S, et al. “Exosomics”—a review of biophysics, biology and biochemistry of exosomes with a focus on human breast milk[J]. Frontiers in Genetics,2018,9:92. doi: 10.3389/fgene.2018.00092
|
[19] |
GONZALEZ B M, LU B, HAN X, et al. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT)[J]. Journal of Proteome Research,2009,8(3):1304−1314. doi: 10.1021/pr800658c
|
[20] |
LILLA T, PETRA M, TAMAS G, et al. Proteomic characterization of thymocyte-derived microvesicles and apoptotic bodies in BALB/c mice[J]. Journal of Proteomics,2011,74(10):2025−2033. doi: 10.1016/j.jprot.2011.05.023
|
[21] |
MOHAMMED H R, EMINE B, GOUDA K H, et al. Exosomes: From garbage bins to promising therapeutic targets[J]. International Journal of Molecular Sciences,2017,18(3):538. doi: 10.3390/ijms18030538
|
[22] |
MATHIEU M, NEVO N, JOUVE M, et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9[J]. Nature Communications,2021,12(1):1−18. doi: 10.1038/s41467-020-20314-w
|
[23] |
SKOTLAND T, HESSVIK N P, SANDVIG K, et al. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology[J]. Journal of Lipid Research,2019,60(1):9−18. doi: 10.1194/jlr.R084343
|
[24] |
GU Y, LI M, WANG T, et al. Lactation-related microRNA expression profiles of porcine breast milk exosomes[J]. Plos One,2012,7(8):e43691. doi: 10.1371/journal.pone.0043691
|
[25] |
LIAO Y L, DU X G, LI J, et al. Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells[J]. Molecular Nutrition & Food Research,2017:1700082.
|
[26] |
LASSER C, ALIKHANI V S, EKSTROM K, et al. Human saliva, plasma and breast milk exosomes contain RNA: Uptake by macrophages[J]. Journal of translational medicine,2011,9(1):1−8. doi: 10.1186/1479-5876-9-1
|
[27] |
高海娜. 牦牛乳外泌体miRNA缓解小肠上皮细胞缺氧损伤的作用机制[D]. 兰州: 甘肃农业大学, 2019
GAO H N. Study of the mechanism for yak milk exosomal mi RNAs in alleviating hypoxia injury of intestinal epithelial cells[D]. Lanzhou: Gansu Agricultural University, 2019.
|
[28] |
XU R J. Development of the newborn GI tract and its relation to colostrum/milk intake: A review[J]. Reproduction, Fertility and Development,1996,8(1):35−48. doi: 10.1071/RD9960035
|
[29] |
CHEN T, XIE M Y, SUN J J, et al. Porcine milk-derived exosomes promote proliferation of intestinal epithelial cells[J]. Scientific Reports,2016,6(1):1−12. doi: 10.1038/s41598-016-0001-8
|
[30] |
XIE M Y, CHEN T, XI Q Y, et al. Porcine milk exosome miRNAs protect intestinal epithelial cells against deoxynivalenol-induced damage[J]. Biochemical Pharmacology,2020,175(1):113898.
|
[31] |
HOCK A, MIYAKE H, LI B, et al. Breast milk-derived exosomes promote intestinal epithelial cell growth[J]. Journal of Pediatric Surgery,2017,52(5):755−759. doi: 10.1016/j.jpedsurg.2017.01.032
|
[32] |
GAO R, ZHANG R, QIAN T, et al. A comparison of exosomes derived from different periods breast milk on protecting against intestinal organoid injury[J]. Pediatric Surgery International,2019,35(12):1363−1368. doi: 10.1007/s00383-019-04562-6
|
[33] |
ADMYRE C, JOHANSSON S M, QAZI K R, et al. Exosomes with immune modulatory features are present in human breast milk[J]. The Journal of Immunology,2007,179(3):1969−1978. doi: 10.4049/jimmunol.179.3.1969
|
[34] |
MELNIK B C, JOHN S, SCHMITZ G. Milk: An exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy?[J]. Journal of Translational Medicine,2014,12(1):43−43. doi: 10.1186/1479-5876-12-43
|
[35] |
ZHOU Q, LI M, WANG X, et al. Immune-related MicroRNAs are Abundant in breast milk exosomes[J]. International Journal of Biological Sciences,2012,8(1):118−123. doi: 10.7150/ijbs.8.118
|
[36] |
KOSAKA N, IZUMI H, SEKINE K, et al. microRNA as a new immune-regulatory agent in breast milk[J]. Silence,2010,1(1):1−8. doi: 10.1186/1758-907X-1-1
|
[37] |
张顺华. 猪不同泌乳期乳汁Exosome中microRNA转录组的鉴定和表达谱分析[D]. 成都: 四川农业大学, 2013
ZHANG S H. Lactation-related microRNA expression profiles of porcine breast milk exosomes[D]. Chengdu: Sichuan Agricultural University, 2013.
|
[38] |
GREENING D W, RONG X, HONG J, et al. A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods[J]. Methods Mol Biol, 2015, 1295: 179-209.
|
[39] |
罗靖莹, 贺宏丽, 郭阳, 等. 差速离心、密度梯度离心、超滤离心技术在骨髓间充质干细胞外泌体提取中的应用对比观察[J]. 山东医药,2019,59(12):48−52. [LUO J Y, HE H L, GUO Y, et al. Comparison of differential centrifugation, density gradient centrifugation, and ultrafiltration of centrifugation in extraction of exosomes from bone marrow mesenchymal stem cells[J]. Shandong Medicine,2019,59(12):48−52. doi: 10.3969/j.issn.1002-266X.2019.12.013
|
[40] |
TIMOTHY A R, JOHN D L, BRIAN J N, et al. Bovine milk exosome proteome[J]. Journal of Proteomics,2012,75(5):1486−1492. doi: 10.1016/j.jprot.2011.11.017
|
[41] |
GUPTA S, RAWAT S, ARORA V, et al. An improvised one-step sucrose cushion ultracentrifugation method for exosome isolation from culture supernatants of mesenchymal stem cells[J]. Stem Cell Research & Therapy,2018,9(1):1−11.
|
[42] |
TANIA S M, JOSE C, ILKA M R, et al. Exosome isolation from distinct biofluids using precipitation and column-based approaches[J]. Plos One,2018,13(6):e0198820. doi: 10.1371/journal.pone.0198820
|
[43] |
INAS H, CAI J, DREWRY M D, et al. A Comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents[J]. PLoS One,2017,12(1):e0170628. doi: 10.1371/journal.pone.0170628
|
[44] |
FITZGERALD J, LEONARD P, DARCY E, et al. Immunoaffinity chromatography: concepts and applications[J]. Protein Chromatography,2017:27−51.
|
[45] |
BLANS K, HANSEN M S, SORNESEN L V, et al. Pellet-free isolation of human and bovine milk extracellular vesicles by size-exclusion chromatography[J]. Journal of Extracellular Vesicles,2017,6(1):1294340. doi: 10.1080/20013078.2017.1294340
|
[46] |
VASWANI K, KOH Y Q, ALMUGHLLIQ F B, et al. A method for the isolation and enrichment of purified bovine milk exosomes[J]. Reproductive Biology,2017,17(4):341−348. doi: 10.1016/j.repbio.2017.09.007
|
[47] |
LIGA A, VLIEGENTHART A D B, OOSTHUYZEN W, et al. Exosome isolation: A microfluidic road-map[J]. Lab on a Chip,2015,15(11):2388−2394. doi: 10.1039/C5LC00240K
|
[48] |
AUGUSTSSON P, KARLSEN J T, SU H W, et al. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping[J]. Nature Communications,2016(7):11556.
|
[49] |
HE M, CROW J, ROTH M, et al. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology[J]. Lab Chip,2014,14(19):3773−3780. doi: 10.1039/C4LC00662C
|
[50] |
YASUI T, YANAGIDA T, ITO S, et al. Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires[J]. Science Advances,2017,3(12):e1701133. doi: 10.1126/sciadv.1701133
|
[51] |
YANG X X, SUN C, WANG L, et al. New insight into isolation, identification techniques and medical applications of exosomes[J]. Journal of Controlled Release,2019,308:119−129. doi: 10.1016/j.jconrel.2019.07.021
|
[52] |
TRAMS E G, LAUTER C J, JR S N, et al. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles[J]. Biochimica et Biophysica Acta (BBA) -Biomembranes,1981,645(1):63−70. doi: 10.1016/0005-2736(81)90512-5
|
[53] |
凌妍, 钟娇丽, 唐晓山, 等. 扫描电子显微镜的工作原理及应用[J]. 山东化工,2018,47(9):78−79. [LING Y, ZHONG J L, TANG S S, et al. The principle and application of scanning electron microscope[J]. Shandong Chemical Industry,2018,47(9):78−79. doi: 10.3969/j.issn.1008-021X.2018.09.033
|
[54] |
TATISCHEFF I, LARQUET E, JUAN M F-P, et al. Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy[J]. Journal of Extracellular Vesicles,2012,1(1):19179. doi: 10.3402/jev.v1i0.19179
|
[55] |
SOKOLOVA V, LUDWIG A K, HORNUNG S, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy[J]. Colloids & Surfaces B Biointerfaces,2011,87(1):146−150.
|
[56] |
REBECCA A D, CHRIS G, ALEXANDRA S B, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis[J]. Nanomedicine:Nanotechnology, Biology and Medicine,2011,7(6):780−788. doi: 10.1016/j.nano.2011.04.003
|
[57] |
SITAR S, KEJZAR A, PAHOVNIK D, et al. Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation[J]. Analytical Chemistry,2015,87(18):9225−9233. doi: 10.1021/acs.analchem.5b01636
|
[58] |
MADAMANCHI N R, RUNGE M S. Western blotting[J]. Methods in Molecular Medicine,2001,51(3):245.
|
[59] |
KUGERATSKI F G, HODGE K, LILLA S, et al. Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker[J]. Nature Cell Biology,2021,23(6):631−641. doi: 10.1038/s41556-021-00693-y
|
[60] |
EDWIN V D P, LEONIE D R M, FRANK A W C, et al. Absolute sizing and label-free identification of extracellular vesicles by flow cytometry[J]. Nanomedicine:Nanotechnology, Biology and Medicine,2018,14(3):801−810. doi: 10.1016/j.nano.2017.12.012
|
[61] |
李林. 蛋白质组学的进展[J]. 生物化学与生物物理进展,2000,27(3):227−232. [LI L. Progress in proteomics[J]. Progress in Biochemistry and Biophysics,2000,27(3):227−232. doi: 10.3321/j.issn:1000-3282.2000.03.001
|
[62] |
YANG M, SONG D H, CAO X Y, et al. Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS - ScienceDirect[J]. Food Research International,2017,92(Feb.):17−25.
|
[63] |
范士杰. 不同动物乳源性外泌体分离鉴定及其蛋白质组学分析[D]. 北京: 中国农业科学院, 2020
FAN S J. Isolation, identification and proteomic analysis of milk-derived exosomes which from different animals[D]. Beijing: Chinese Academy of Agricultural, 2020.
|
[64] |
陆姝欢, 杨松, 元英进. 脂质组学在医药研究中的应用[J]. 细胞生物学杂志,2007(2):169−172. [LU S H, YANG S, YUAN Y J. Application of lipidomics in medicine and drug development[J]. Chinese Journal of Cell Biology,2007(2):169−172.
|
[65] |
林金丹, 闫爽. 外泌体在脂肪分化与脂代谢中作用的研究进展[J]. 国际内分泌代谢杂志,2020,40(5):335−339. [LIN J D, YAN S. Progress in the role of exosomes in fat differentiation and lipid metabolism[J]. International Journal of Endocrinology and Metabolism,2020,40(5):335−339.
|
[66] |
RECORD M, CARAYON K, POIROT M, et al. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies[J]. Biochimica et Biophysica Acta,2014,1841(1):108−120. doi: 10.1016/j.bbalip.2013.10.004
|
[67] |
屈良鹄. RNA组学: 后基因组时代的科学前沿[J]. 中国科学(生命科学),2009,39(1):1−2. [QU L H. RNA omics: A scientific frontier in the post-genomic era[J]. Science China(Life Sciences),2009,39(1):1−2.
|
[68] |
CHEN X, CHAO G, LI H, et al. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products[J]. Cell research,2010,20(10):1128−1137. doi: 10.1038/cr.2010.80
|
[69] |
马韶阳. 牛奶来源外泌体miRNA和circRNA在金黄色葡萄球菌源乳腺炎中的功能研究[D]. 杨凌: 西北农林科技大学, 2020
MA S Y. The functions of mi RNAs and circ RNAs from bovine milk-derived exosomes in mastitis caused by Staphylococcus aureus infection[D]. Yangling: Northwest A&F University, 2020.
|