Citation: | LIU Zai, YAN Yaping, CUI Jinna, et al. Advances in Methods of Microbial Molecular Ecology[J]. Science and Technology of Food Industry, 2022, 43(18): 483−492. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090210. |
[1] |
THOMPSON L R, SANDERS J G, MCDONALD D, et al. A communal catalogue reveals earth’s multiscale microbial diversity[J]. Nature,2017,551(7681):457−463. doi: 10.1038/nature24621
|
[2] |
WANG X, DU H, XU Y. Source tracking of prokaryotic communities in fermented grain of chinese strong-flavor liquor[J]. International Journal of Food Microbiology,2017,244:27−35. doi: 10.1016/j.ijfoodmicro.2016.12.018
|
[3] |
王柏文, 吴群, 徐岩, 等. 中国白酒酒曲微生物组研究进展及趋势[J]. 微生物学通报,2021,48(5):1737−1746. [WANG B W, WU Q, XU Y, et al. Recent advances and perspectives in study of microbiome in chinese jiuqu starter[J]. Microbiology China,2021,48(5):1737−1746. doi: 10.13344/j.microbiol.china.200650
WANG B W, WU Q, XU Y, et al. Recent advances and perspectives in study of microbiome in chinese jiuqu starter[J]. Microbiology China, 2021, 48(05): 1737-1746. doi: 10.13344/j.microbiol.china.200650
|
[4] |
STACY A, MCNALLY L, DARCH S E, et al. The biogeography of polymicrobial infection[J]. Nature Reviews Microbiology,2016,14:93−105. doi: 10.1038/nrmicro.2015.8
|
[5] |
MIZRAHI I, WALLACE R J, MORAÎS S. The rumen microbiome: balancing food security and environmental impacts[J]. Nature Reviews Microbiology,2021,19:553−566. doi: 10.1038/s41579-021-00543-6
|
[6] |
LU M, REN Y L, WANG S J, et al. Contribution of soil variables to bacterial community composition following land use change in napahai plateau wetlands[J]. Journal of Environmental Management,2019,246(Sep.15):77−84.
|
[7] |
冯明谦, 刘德明. 滚筒式高温堆肥中微生物种类数量的研究[J]. 中国环境科学,1999(6):490−492. [FENG M Q, LIU D M. Study on microbe species for high-temperature composting of horizontal cylinder[J]. China Environmental Science,1999(6):490−492. doi: 10.3321/j.issn:1000-6923.1999.06.003
FENG M Q, LIU D M. Study on microbe species for high-temperature composting of horizontal cylinder[J]. China Environmental Science, 1999(06): 490-492. doi: 10.3321/j.issn:1000-6923.1999.06.003
|
[8] |
SHANG Q, YANG G, WANG Y, et al. Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted lanzhou lily (Lilium davidii var. unicolor)plants grown in the fifield[J]. World Journal of Microbiology & Biotechnology,2016,32(6):1−15.
|
[9] |
WATZINGER A. Microbial phospholipid biomarkers and stable isotope methods help reveal soil functions[J]. Soil Biology and Biochemistry,2015,86:98−107. doi: 10.1016/j.soilbio.2015.03.019
|
[10] |
JSB A, BV B, JM A, et al. Combined extraction method for metabolomic and PLFA analysis of soil[J]. Applied Soil Ecology,2019,135:129−136. doi: 10.1016/j.apsoil.2018.11.012
|
[11] |
LIANG H, CHEN H, JI C, et al. Dynamic and functional characteristics of predominant species in industrial paocai as revealed by combined DGGE and metagenomic sequencing[J]. Frontiers in Microbiology,2018:9.
|
[12] |
SINGH A, MÛLLER B, SCHNÛRER A. Profiling temporal dynamics of acetogenic communities in anaerobic digesters using next-generation sequencing and T-RFLP[J]. Scientific Reports, 2021.
|
[13] |
SUI C P, CABOT J M, MACKA M, et al. Isotachophoretic fluorescence in situ hybridization of intact bacterial cells[J]. Anal Chem, 2017.
|
[14] |
SALES M L, DALL'AGNOL M, OLIVEIRA AMD , et al. RT-qPCR for the diagnosis of the vesiculovirus cocal virus[J]. Archives of Virology, 2020.
|
[15] |
JONES B M, KUSTKA A B. A quantitative SMRT cell sequencing method for ribosomal amplicons[J]. Journal of Microbiological Methods,2017,135(Complete):77−84.
|
[16] |
GEISEN S, BONKOWSKI M. Methodological advances to study the diversity of soil protists and their functioning in soil food webs[J]. Applied Soil Ecology,2018,123:328−333. doi: 10.1016/j.apsoil.2017.05.021
|
[17] |
LAMAS A, REGAL P, VÀZQUEZ B, et al. Transcriptomics: A powerful tool to evaluate the behavior of foodborne pathogens in the food production chain[J]. Food Research International,2019,125:108543. doi: 10.1016/j.foodres.2019.108543
|
[18] |
MAUCHLINE T H, HAYAT R, CLARK I M, et al. Old meets new: most probable number validation of metagenomic and metatranscriptomic datasets in soil[J]. Letters in Applied Microbiology, 2018.
|
[19] |
MENG X, YU Y, GONG P, et al. An integrated droplet digital PCR gene chip for absolute quantification of nucleic acid[J]. Microfluidics and Nanofluidics, 2021, 25(7): 1-9.
|
[20] |
LANDOLT L, MARTI H P, BEISLAND C, et al. RNA extraction for RNA sequencing of archival renal tissues[J]. Scandinavian Journal of Clinical & Laboratory Investigation,2016:426−434.
|
[21] |
NYKYRI J, HERRMANN A M, HÅKANSSON S. Isothermal microcalorimetry for thermal viable count of microorganisms in pure cultures and stabilized formulations[J]. Bmc Microbiology, 2019, 19(1):65.
|
[22] |
EI-LIETHY M A, HEMDAN B A, EI-TAWEEL G E. Phenotyping using semi-automated BIOLOG and conventional PCR for identification of bacillus isolated from biofilm of sink drainage pipes[J]. Acta Ecologica Sinica,2018,38(5):334−338. doi: 10.1016/j.chnaes.2018.01.011
|
[23] |
MORGAN M C, BOYETTE M, GOFORTH C, et al. Comparison of the Biolog OmniLog Identification System and 16S ribosomal RNA gene sequencing for accuracy in identification of atypical bacteria of clinical origin[J]. Journal of Microbiological Methods,2009,79(3):336−343. doi: 10.1016/j.mimet.2009.10.005
|
[24] |
GUANG H W, JUN J L, XIAO N Q, et al. Effects of fertilization on bacterial community structure and function in a black soil of dehui region estimated by Biolog and PCR-DGGE methods[J]. Acta Ecologica Sinica,2008,28(1):220−226. doi: 10.1016/S1872-2032(08)60023-2
|
[25] |
CHEN H, ZHAO X, LIN Q, et al. Using a combination of PLFA and DNA-based sequencing analyses to detect shifts in the soil microbial community composition after a simulated spring precipitation in a semi-arid grassland in China[J]. Science of The Total Environment,2019,657:1237−1245. doi: 10.1016/j.scitotenv.2018.12.126
|
[26] |
ORWIN K H, DICKIE I A, HOLDAWAY R, et al. A comparison of the ability of PLFA and 16S rRNA gene metabarcoding to resolve soil community change and predict ecosystem functions[J]. Soil Biology and Biochemistry,2018,117:27−35. doi: 10.1016/j.soilbio.2017.10.036
|
[27] |
赵妍, 刘顺杰, 张亚茹, 等. 微生物多样性分析技术应用于食用菌发酵培养料分析的进展[J]. 食用菌学报,2019,26(3):148−156. [ZHAO Y, LIU S J, ZHANG Y R, et al. Advances in application of microbial diversity analysis techniques on analyzing edible fungi fermented substrates[J]. Acta Edulis Fungi,2019,26(3):148−156. doi: 10.16488/j.cnki.1005-9873.2019.03.018
ZHAO Y, LIU S J, ZHANG Y R, et al. Advances in application of microbial diversity analysis techniques on analyzing edible fungi fermented substrates[J]. Acta Edulis Fungi, 2019, 26(3): 148-156. doi: 10.16488/j.cnki.1005-9873.2019.03.018
|
[28] |
LI Z H, RUI J P, LI X Z, et al. Bacterial community succession and metabolite changes during doubanjiang-meju fermentation, a Chinese traditional fermented broad bean (Vicia faba L. ) paste[J]. Food Chemistry,2017,218:534−542. doi: 10.1016/j.foodchem.2016.09.104
|
[29] |
COSTA M, WEESE J S. Methods and basic concepts for microbiota assessment[J]. The Veterinary Journal,2019,249:10−15. doi: 10.1016/j.tvjl.2019.05.005
|
[30] |
MUYZER G, SMALLA K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology[J]. Antonie Van Leeuwenhoek,1998,73(1):127−141. doi: 10.1023/A:1000669317571
|
[31] |
XIONG Z Q, LI Y Y, XIANG Y W, et al. Short communication: dynamic changes in bacterial diversity during the production of powdered infant formula by PCR-DGGE and high-throughput sequencing[J]. Journal of Dairy Science,2020,103(7):5972−5977. doi: 10.3168/jds.2019-18064
|
[32] |
CHAHORM K, PRAKITCHAIWATTANA C. Application of Reverse Transcriptase-PCR-DGGE as a rapid method for routine determination of Vibrio spp. in foods[J]. International Journal of Food Microbiology,2017:264.
|
[33] |
BO B, KIM S A, HAN N S. Bacterial and fungal diversity in Laphet, traditional fermented tea leaves in myanmar, analyzed by culturing, DNA amplicon-based sequencing, and PCR-DGGE methods[J]. International Journal of Food Microbiology,2020,320:108508. doi: 10.1016/j.ijfoodmicro.2020.108508
|
[34] |
MARSH T L . Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products[J]. Current Opinion in Microbiology, 1999, 2(3): 323-327.
|
[35] |
LÓPEZ A C, ALIPPI A M. Feasibility of using RFLP of PCR-amplified 16S rRNA gene(s) for rapid differentiation of isolates of aerobic spore-forming bacteria from honey[J]. Journal of Microbiological Methods,2019,165:105690. doi: 10.1016/j.mimet.2019.105690
|
[36] |
ROSA N M, AGNOLETTI F, LOLLAI S, et al. Comparison of PCR-RFLP, API® 20 Strep and MALDI-TOF MS for identification of Streptococcus spp. collected from sheep and goat milk samples[J]. Small Ruminant Research,2019,180:35−40. doi: 10.1016/j.smallrumres.2019.09.023
|
[37] |
李甜甜, 胡泓, 王金爽, 等. 湿地土壤微生物群落结构与多样性分析方法研究进展[J]. 土壤通报,2016,47(3):758−762. [LI T T, HU H, WANG J S, et al. Progress in research methods of soil microbial structure and diversity in wetlands[J]. Chinese Journal of Soil Science,2016,47(3):758−762. doi: 10.19336/j.cnki.trtb.2016.03.38
LI T T, HU H, WANG J S, et al. Progress in Research Methods of Soil Microbial Structure and Diversity in Wetlands. [J]. Chinese Journal of Soil Science, 2016, 47(3): 758-762. doi: 10.19336/j.cnki.trtb.2016.03.38
|
[38] |
HONG P, YAO X, CHEN W, et al. Dissecting complicated viral spreading of enterovirus 71 using in situ bioorthogonal fluorescent labeling[J]. Biomaterials,2018,181:199−209. doi: 10.1016/j.biomaterials.2018.07.061
|
[39] |
HUBER D, VOITH VON VOITHENBERG L, KAIGALA G V. Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH?[J]. Micro and Nano Engineering,2018,1:15−24. doi: 10.1016/j.mne.2018.10.006
|
[40] |
CUI C, SHU W, LI P. Fluorescence in situ hybridization: Cell-based genetic diagnostic and research applications[J]. Frontiers in Cell and Developmental Biology,2016:4.
|
[41] |
宋伟凤, 李明聪, 高峥. 环境中微生物原位检测方法研究进展[J]. 生物技术通报,2017,33(10):26−32. [SONG W F, LI M C, GAO Z. Research progress onin situ detection methods of microorganisms[J]. Biotechnology Bulletin,2017,33(10):26−32. doi: 10.13560/j.cnki.biotech.bull.1985.2017-0550
SONG W F, LI M C, GAO Z. Research Progress on in situ Detection Methods of Microorganisms[J]. Biotechnology Bulletin, 2017, 33(10): 26-32. doi: 10.13560/j.cnki.biotech.bull.1985.2017-0550
|
[42] |
CHU Y H, HARDIN H, ZHANG R R, et al. In situ hybridization: Introduction to techniques, applications and pitfalls in the performance and interpretation of assays[J]. Seminars in Diagnostic Pathology,2019,36(5):336−341. doi: 10.1053/j.semdp.2019.06.004
|
[43] |
ZHANG B, MAIMAITI Y, LIU C, et al. Direct detection of Staphylococcus aureus in positive blood cultures through molecular beacon-based fluorescence in situ hybridization[J]. Journal of Microbiological Methods,2019,159:34−41. doi: 10.1016/j.mimet.2019.02.007
|
[44] |
SALIMI G, MOUSAVI E, KIANI H. Efficiency of fluorescence in situ hybridization (FISH) method for the rapid detection of Salmonella in minced lamb meat: Method analysis and optimization[J]. Journal of Microbiological Methods,2020,175:105989. doi: 10.1016/j.mimet.2020.105989
|
[45] |
BALIGA S, MURPHY C, SHARON L, et al. Rapid method for detecting and differentiating Mycobacterium tuberculosis complex and non-tuberculous mycobacteria in sputum by fluorescence in situ hybridization with DNA probes[J]. International Journal of Infectious Diseases,2018,75:1−7. doi: 10.1016/j.ijid.2018.07.011
|
[46] |
TANG Y, ZOU B, WANG R, et al. Multiplex-invasive reaction-assisted qPCR for quantitatively detecting the abundance of EGFR exon 19 deletions in cfDNA[J]. Analytical Methods,2020:12.
|
[47] |
BAHLINGER E, DORN-IN S, BEINDORF P M, et al. Development of two specific multiplex qPCRs to determine amounts of Pseudomonas, Enterobacteriaceae, Brochothrix thermosphacta andStaphylococcus in meat and heat-treated meat products[J]. International Journal of Food Microbiology,2020:337.
|
[48] |
PANCZA B, SZATHMÁRY M, GYURJÁN I, et al. A rapid and efficient DNA isolation method for qPCR-based detection of pathogenic and spoilage bacteria in milk[J]. Food Control,2021:108236.
|
[49] |
BROTONS P, PEREZ-ARGÜELLO A, LAUNES C, et al. Validation and implementation of a direct RT-qPCR method for rapid screening of SARS-CoV-2 infection by using non-invasive saliva samples[J]. Journals & Books,2021,110:363−370.
|
[50] |
REON B J, DUTTA A. Biological processes discovered by high-throughput sequencing[J]. American Journal of Pathology,2016:722−732.
|
[51] |
TREMBLAY J, SINGH K, FERN A, et al. Primer and platform effects on 16S rRNA tag sequencing[J]. Frontiers in Microbiology,2015,6:771.
|
[52] |
周天慈, 何宏魁, 徐岩, 等. 基于高通量扩增子测序技术解析中高温大曲微生物来源[J]. 食品与发酵工业, 2021, 47(16): 66−71.
ZHOU T C, HE H K, XU Y, et al. Exploring the source of microbiota in medium-high temperature daqu based on high-throughput amplicon sequencing[J]. Food and Fermentation Industries, 2021, 47(16): 66−71.
|
[53] |
ZHAO Y J, WEI W L, TANG L, et al. Characterization of aroma and bacteria profiles of Sichuan industrial paocai by HS-SPME-GC-O-MS and 16S rRNA amplicon sequencing[J]. Food Research International, 2021(149).
|
[54] |
KAMIMURA B A, CABRAL L, NORONHA M F, et al. Amplicon sequencing reveals the bacterial diversity in milk, dairy premises and Serra da Canastra artisanal cheeses produced by three different farms[J]. Food Microbiology,2020,89(Aug.):103453.1−103453.12.
|
[55] |
BLAMEY J M, FISCHER F, MEYER H P, et al. Enzymatic biocatalysis in chemical transformations: A promising and emerging field in green chemistry practice-ScienceDierct[J]. Biotechnology of Microbial Enzymes,2017:347−403.
|
[56] |
HUANG Y H, YI Z L, JIN Y L, et al. Metatranscriptomics reveals the functions and enzyme profiles of the microbial community in Chinese Nong-flavor liquor starter[J]. Frontiers in Microbiology,2017,8:1747. doi: 10.3389/fmicb.2017.01747
|
[57] |
王正, 吴群, 徐岩, 等. 谷物蛋白对白酒发酵过程中微生物群落及其代谢多样性的调控[J]. 微生物学通报,2021(48):4167−4177. [WANG Z, WU Q, XU Y, et al. The regulation of grain protein on the microbial community and metabolic diversity in the process of liquor fermentation[J]. Microbiology China,2021(48):4167−4177. doi: 10.13344/j.microbiol.china.210228
WANG Z, WU Q, XU Y, et al. The regulation of grain protein on the microbial community and metabolic diversity in the process of liquor fermentation[J]. Microbiology China, 2021, 1-10. doi: 10.13344/j.microbiol.china.210228
|
[58] |
WANG B W, WU Q, XU Y, et al. Specific volumetric weight-driven shift in microbiota compositions with saccharifying activity change in starter for chinese baijiu fermentation[J]. Frontiers in Microbiology,2018,9:2349. doi: 10.3389/fmicb.2018.02349
|
[59] |
LU X W, WU Q, XU Y, et al. Genomic and transcriptomic analyses of the Chinese Maotai-flavored liquor yeast MT1 revealed its unique multi-carbon co-utilization[J]. Bmc Genomics,2015,16(1):1−14. doi: 10.1186/1471-2164-16-1
|
[60] |
TANG R Q, YE P L, ALPER H S, et al. Identification and characterization of novel xylose isomerases from a Bos taurus fecal metagenome[J]. Applied Microbiology and Biotechnology,2019,103(11):1−13.
|
[61] |
王禄禄, 王立志, 周美丽. 宏基因组学技术在反刍动物瘤胃微生态系统上的应用研究进展[J]. 中国微生态学杂志,2017,29(2):223−228. [WANG L L, WANG L Z, ZHOU M L. Application of metagenomics technology on the microecological system in rumen of ruminant: Research progress[J]. Chinese Journal of Microbiology,2017,29(2):223−228. doi: 10.13381/j.cnki.cjm.201702028
WANG L L, WANG L Z, ZHOU M L. Application of metagenomics technology on the microecological system in rumen of ruminant: Research progress[J]. Chinese Journal of Microbiology, 2017, 29(02): 223-228. doi: 10.13381/j.cnki.cjm.201702028
|
[62] |
ALI A, CHRISTOPHERSEN C T, KEELAN J A. Vaginal microbial profiling in a preterm birth high-risk cohort using shallow shotgun metagenomics[J]. Microbiology Australia, 2021, 42(2): 69-74.
|
[63] |
BEI Q H, PENG J J, LIESACK W. Shedding light on the functional role of the Ignavibacteria in Italian rice field soil: A meta-genomic/transcriptomic analysis[J]. Soil Biology and Biochemistry,2021:163.
|
[64] |
MOJIB N, THIMMA M, KUMARAN M, et al. Comparative metatranscriptomics reveals decline of a neustonic planktonic population[J]. Limnology and Oceanography,2017,62:299−310. doi: 10.1002/lno.10395
|
[65] |
RIPPIN M, BORCHHARDT N, WILLIAMS L, et al. Genus richness of microalgae and cyanobacteria in biological soil crusts from svalbard and livingston island: morphological versus molecular approaches[J]. Polar Biology,2018,41(5):1−15.
|
[66] |
LI F, NEVES ALA, GHOSHAL B, et al. Symposium review: mining metagenomic and metatranscriptomic data for clues about microbial metabolic functions in ruminants[J]. Journal of Dairy Science,2018,101(6):5605−5618. doi: 10.3168/jds.2017-13356
|
[67] |
雷忠华, 陈聪聪, 陈谷. 基于宏基因组和宏转录组的发酵食品微生物研究进展[J]. 食品科学,2018,39(3):330−337. [LEI Z H, CHEN C C, CHEN G. Metagenomic and metatranscriptomic analysis of microbiota in fermented foods: Review of recent advances[J]. Food Science,2018,39(3):330−337. doi: 10.7506/spkx1002-6630-201803049
LEI Z H, CHEN C C, CHEN G. Metagenomic and metatranscriptomic analysis of microbiota in fermented foods: review of recent advances[J]. Food Science, 2018, 39(3): 330-337. doi: 10.7506/spkx1002-6630-201803049
|
[68] |
DESANTIS T Z, BRODIE E L, MOBERG J P, et al. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment[J]. Microbial Ecology, 2007, 53(3): 371−383.
|
[69] |
TAGUCHI T, ISHIKAWA M, ICHIKAWA M, et al. Amplification-free detection of bacterial genes using a signaling probe-based DNA microarray [J]. Biosensors and Bioelectronics, 2021, 194(113659).
|
[70] |
SHIN S Y, KIM D M, JO Y, et al. DNA Microarray-based detection of bacteria in samples containing antibiotics: Effect of antibiotics on the performance of pathogen detection assays[J]. Biotechnology and Bioprocess Engineering,2021,26(3):447−455. doi: 10.1007/s12257-020-0342-9
|
[71] |
SOHRABI H, CANNIZZO F T, PREGEL P, et al. Tissue and species identification in minced meat and meat products from Italian commercial markets by DNA microarray and histological approach [J].Veterinaria Italiana, 2020, 56(2): 77−85.
|
[72] |
TAN K T, DING L W, WU C S, et al. Repurposing RNA sequencing for discovery of RNA modifications in clinical cohorts[J]. Science Advances,2021,7(32):1−26.
|
[73] |
KIM N Y, LEE H J, KIM H S, et al. Identification of plant viruses infecting pear using RNA sequencing[J]The Plant Pathology Journal, 2021, 37(3): 258−267.
|
[74] |
REN Q D, WEI F Q, YUAN C, et al. The effects of removing dead bacteria by propidium monoazide on the profile of salivary microbiome[J]. BMC Oral Health,2021,460:21.
|
[75] |
MIOTTO M, BARRETTA C, OSSAi S O, et al. Optimization of a propidium monoazide-qPCR method for Escherichia coli quantification in raw seafood[J]. International Journal of Food Microbiology,2019,318:108467.
|
[76] |
ZHAO S, ZHANG J Y, LI Z, et al. Enumeration of viable non-culturable vibrio cholerae using droplet digital PCR combined with propidium monoazide treatment[J]. Frontiers in Cellular and Infection Microbiology,2021,11:753078. doi: 10.3389/fcimb.2021.753078
|
[77] |
KERKVLIET J, ARTHUR D F, MICHIEL V W, et al. The Bellerophon pipeline, improving de novo transcriptomes and removing chimeras[J]. Ecology and Evolution, 2019, 9(18): 10513-10521.
|
[78] |
EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011.
|
[79] |
FITZPATRICK A H, RUPNIK A, O'SHEA H, et al. High throughput sequencing for the detection and characterization of RNA viruses[J]. Frontiers in Microbiology,2021,12:621719. doi: 10.3389/fmicb.2021.621719
|
1. |
吴敏,黄娟,石桃雄,朱丽伟,邓娇,梁成刚,汪燕,刘飞,李荣,蔡芳,陈庆富. 应用CRISPR/Cas9基因编辑技术获得高直链淀粉水稻种质. 福建农业学报. 2024(01): 17-24 .
![]() | |
2. |
郭增辉,韩洁楠,李冉,上官小川,刘仕缘,刘德斌,徐晶宇,李明顺,李新海. Ae1-5180高直链淀粉玉米近等基因系农艺性状与子粒品质分析. 玉米科学. 2024(04): 31-38 .
![]() | |
3. |
吴建国,洪雁,顾正彪,程力,李兆丰,李才明,班宵逢. OSA改性高直链玉米淀粉复合疏水膜的制备及性能研究. 中国塑料. 2024(10): 23-28 .
![]() | |
4. |
刘雨霏,罗慧琳,陈响,潘云云,申雨韩,张浩宇,姚长洪. 高直链淀粉的生物合成和应用研究进展. 化学与生物工程. 2023(02): 1-8+15 .
![]() | |
5. |
陈书明,张宁. 低GI面条的研制及其体外淀粉消化特性研究. 中国食品添加剂. 2023(05): 119-132 .
![]() | |
6. |
王婷婷,康志敏,张康逸,何梦影,张国治. 内源性成分对低GI挂面消化特性的影响. 食品工业科技. 2023(12): 1-9 .
![]() | |
7. |
程伟琴,杨鹏飞,冯明,霍二福,倪中海. 高直链淀粉/聚乳酸接枝共聚物的制备及性能研究. 塑料科技. 2023(10): 77-80 .
![]() |