LIU Zai, YAN Yaping, CUI Jinna, et al. Advances in Methods of Microbial Molecular Ecology[J]. Science and Technology of Food Industry, 2022, 43(18): 483−492. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090210.
Citation: LIU Zai, YAN Yaping, CUI Jinna, et al. Advances in Methods of Microbial Molecular Ecology[J]. Science and Technology of Food Industry, 2022, 43(18): 483−492. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090210.

Advances in Methods of Microbial Molecular Ecology

More Information
  • Received Date: September 17, 2021
  • Available Online: July 19, 2022
  • Microbial molecular ecology is an interdisciplinary of molecular biology and microbial ecology. It is important to understand the composition and structure, function, the relationship between microorganisms and the relationship between microorganisms and the environment in microbial ecosystems. Microbial molecular ecology research techniques and methods widely used are comprehensively introduced, analyzed and summarized, and the advantages, disadvantages and applications of the techniques and methods are discussed. This study would provide a reference for understanding and regulating the kind and population of microbial communities in ecosystems.
  • [1]
    THOMPSON L R, SANDERS J G, MCDONALD D, et al. A communal catalogue reveals earth’s multiscale microbial diversity[J]. Nature,2017,551(7681):457−463. doi: 10.1038/nature24621
    [2]
    WANG X, DU H, XU Y. Source tracking of prokaryotic communities in fermented grain of chinese strong-flavor liquor[J]. International Journal of Food Microbiology,2017,244:27−35. doi: 10.1016/j.ijfoodmicro.2016.12.018
    [3]
    王柏文, 吴群, 徐岩, 等. 中国白酒酒曲微生物组研究进展及趋势[J]. 微生物学通报,2021,48(5):1737−1746. [WANG B W, WU Q, XU Y, et al. Recent advances and perspectives in study of microbiome in chinese jiuqu starter[J]. Microbiology China,2021,48(5):1737−1746. doi: 10.13344/j.microbiol.china.200650

    WANG B W, WU Q, XU Y, et al. Recent advances and perspectives in study of microbiome in chinese jiuqu starter[J]. Microbiology China, 2021, 48(05): 1737-1746. doi: 10.13344/j.microbiol.china.200650
    [4]
    STACY A, MCNALLY L, DARCH S E, et al. The biogeography of polymicrobial infection[J]. Nature Reviews Microbiology,2016,14:93−105. doi: 10.1038/nrmicro.2015.8
    [5]
    MIZRAHI I, WALLACE R J, MORAÎS S. The rumen microbiome: balancing food security and environmental impacts[J]. Nature Reviews Microbiology,2021,19:553−566. doi: 10.1038/s41579-021-00543-6
    [6]
    LU M, REN Y L, WANG S J, et al. Contribution of soil variables to bacterial community composition following land use change in napahai plateau wetlands[J]. Journal of Environmental Management,2019,246(Sep.15):77−84.
    [7]
    冯明谦, 刘德明. 滚筒式高温堆肥中微生物种类数量的研究[J]. 中国环境科学,1999(6):490−492. [FENG M Q, LIU D M. Study on microbe species for high-temperature composting of horizontal cylinder[J]. China Environmental Science,1999(6):490−492. doi: 10.3321/j.issn:1000-6923.1999.06.003

    FENG M Q, LIU D M. Study on microbe species for high-temperature composting of horizontal cylinder[J]. China Environmental Science, 1999(06): 490-492. doi: 10.3321/j.issn:1000-6923.1999.06.003
    [8]
    SHANG Q, YANG G, WANG Y, et al. Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted lanzhou lily (Lilium davidii var. unicolor)plants grown in the fifield[J]. World Journal of Microbiology & Biotechnology,2016,32(6):1−15.
    [9]
    WATZINGER A. Microbial phospholipid biomarkers and stable isotope methods help reveal soil functions[J]. Soil Biology and Biochemistry,2015,86:98−107. doi: 10.1016/j.soilbio.2015.03.019
    [10]
    JSB A, BV B, JM A, et al. Combined extraction method for metabolomic and PLFA analysis of soil[J]. Applied Soil Ecology,2019,135:129−136. doi: 10.1016/j.apsoil.2018.11.012
    [11]
    LIANG H, CHEN H, JI C, et al. Dynamic and functional characteristics of predominant species in industrial paocai as revealed by combined DGGE and metagenomic sequencing[J]. Frontiers in Microbiology,2018:9.
    [12]
    SINGH A, MÛLLER B, SCHNÛRER A. Profiling temporal dynamics of acetogenic communities in anaerobic digesters using next-generation sequencing and T-RFLP[J]. Scientific Reports, 2021.
    [13]
    SUI C P, CABOT J M, MACKA M, et al. Isotachophoretic fluorescence in situ hybridization of intact bacterial cells[J]. Anal Chem, 2017.
    [14]
    SALES M L, DALL'AGNOL M, OLIVEIRA AMD , et al. RT-qPCR for the diagnosis of the vesiculovirus cocal virus[J]. Archives of Virology, 2020.
    [15]
    JONES B M, KUSTKA A B. A quantitative SMRT cell sequencing method for ribosomal amplicons[J]. Journal of Microbiological Methods,2017,135(Complete):77−84.
    [16]
    GEISEN S, BONKOWSKI M. Methodological advances to study the diversity of soil protists and their functioning in soil food webs[J]. Applied Soil Ecology,2018,123:328−333. doi: 10.1016/j.apsoil.2017.05.021
    [17]
    LAMAS A, REGAL P, VÀZQUEZ B, et al. Transcriptomics: A powerful tool to evaluate the behavior of foodborne pathogens in the food production chain[J]. Food Research International,2019,125:108543. doi: 10.1016/j.foodres.2019.108543
    [18]
    MAUCHLINE T H, HAYAT R, CLARK I M, et al. Old meets new: most probable number validation of metagenomic and metatranscriptomic datasets in soil[J]. Letters in Applied Microbiology, 2018.
    [19]
    MENG X, YU Y, GONG P, et al. An integrated droplet digital PCR gene chip for absolute quantification of nucleic acid[J]. Microfluidics and Nanofluidics, 2021, 25(7): 1-9.
    [20]
    LANDOLT L, MARTI H P, BEISLAND C, et al. RNA extraction for RNA sequencing of archival renal tissues[J]. Scandinavian Journal of Clinical & Laboratory Investigation,2016:426−434.
    [21]
    NYKYRI J, HERRMANN A M, HÅKANSSON S. Isothermal microcalorimetry for thermal viable count of microorganisms in pure cultures and stabilized formulations[J]. Bmc Microbiology, 2019, 19(1):65.
    [22]
    EI-LIETHY M A, HEMDAN B A, EI-TAWEEL G E. Phenotyping using semi-automated BIOLOG and conventional PCR for identification of bacillus isolated from biofilm of sink drainage pipes[J]. Acta Ecologica Sinica,2018,38(5):334−338. doi: 10.1016/j.chnaes.2018.01.011
    [23]
    MORGAN M C, BOYETTE M, GOFORTH C, et al. Comparison of the Biolog OmniLog Identification System and 16S ribosomal RNA gene sequencing for accuracy in identification of atypical bacteria of clinical origin[J]. Journal of Microbiological Methods,2009,79(3):336−343. doi: 10.1016/j.mimet.2009.10.005
    [24]
    GUANG H W, JUN J L, XIAO N Q, et al. Effects of fertilization on bacterial community structure and function in a black soil of dehui region estimated by Biolog and PCR-DGGE methods[J]. Acta Ecologica Sinica,2008,28(1):220−226. doi: 10.1016/S1872-2032(08)60023-2
    [25]
    CHEN H, ZHAO X, LIN Q, et al. Using a combination of PLFA and DNA-based sequencing analyses to detect shifts in the soil microbial community composition after a simulated spring precipitation in a semi-arid grassland in China[J]. Science of The Total Environment,2019,657:1237−1245. doi: 10.1016/j.scitotenv.2018.12.126
    [26]
    ORWIN K H, DICKIE I A, HOLDAWAY R, et al. A comparison of the ability of PLFA and 16S rRNA gene metabarcoding to resolve soil community change and predict ecosystem functions[J]. Soil Biology and Biochemistry,2018,117:27−35. doi: 10.1016/j.soilbio.2017.10.036
    [27]
    赵妍, 刘顺杰, 张亚茹, 等. 微生物多样性分析技术应用于食用菌发酵培养料分析的进展[J]. 食用菌学报,2019,26(3):148−156. [ZHAO Y, LIU S J, ZHANG Y R, et al. Advances in application of microbial diversity analysis techniques on analyzing edible fungi fermented substrates[J]. Acta Edulis Fungi,2019,26(3):148−156. doi: 10.16488/j.cnki.1005-9873.2019.03.018

    ZHAO Y, LIU S J, ZHANG Y R, et al. Advances in application of microbial diversity analysis techniques on analyzing edible fungi fermented substrates[J]. Acta Edulis Fungi, 2019, 26(3): 148-156. doi: 10.16488/j.cnki.1005-9873.2019.03.018
    [28]
    LI Z H, RUI J P, LI X Z, et al. Bacterial community succession and metabolite changes during doubanjiang-meju fermentation, a Chinese traditional fermented broad bean (Vicia faba L. ) paste[J]. Food Chemistry,2017,218:534−542. doi: 10.1016/j.foodchem.2016.09.104
    [29]
    COSTA M, WEESE J S. Methods and basic concepts for microbiota assessment[J]. The Veterinary Journal,2019,249:10−15. doi: 10.1016/j.tvjl.2019.05.005
    [30]
    MUYZER G, SMALLA K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology[J]. Antonie Van Leeuwenhoek,1998,73(1):127−141. doi: 10.1023/A:1000669317571
    [31]
    XIONG Z Q, LI Y Y, XIANG Y W, et al. Short communication: dynamic changes in bacterial diversity during the production of powdered infant formula by PCR-DGGE and high-throughput sequencing[J]. Journal of Dairy Science,2020,103(7):5972−5977. doi: 10.3168/jds.2019-18064
    [32]
    CHAHORM K, PRAKITCHAIWATTANA C. Application of Reverse Transcriptase-PCR-DGGE as a rapid method for routine determination of Vibrio spp. in foods[J]. International Journal of Food Microbiology,2017:264.
    [33]
    BO B, KIM S A, HAN N S. Bacterial and fungal diversity in Laphet, traditional fermented tea leaves in myanmar, analyzed by culturing, DNA amplicon-based sequencing, and PCR-DGGE methods[J]. International Journal of Food Microbiology,2020,320:108508. doi: 10.1016/j.ijfoodmicro.2020.108508
    [34]
    MARSH T L . Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products[J]. Current Opinion in Microbiology, 1999, 2(3): 323-327.
    [35]
    LÓPEZ A C, ALIPPI A M. Feasibility of using RFLP of PCR-amplified 16S rRNA gene(s) for rapid differentiation of isolates of aerobic spore-forming bacteria from honey[J]. Journal of Microbiological Methods,2019,165:105690. doi: 10.1016/j.mimet.2019.105690
    [36]
    ROSA N M, AGNOLETTI F, LOLLAI S, et al. Comparison of PCR-RFLP, API® 20 Strep and MALDI-TOF MS for identification of Streptococcus spp. collected from sheep and goat milk samples[J]. Small Ruminant Research,2019,180:35−40. doi: 10.1016/j.smallrumres.2019.09.023
    [37]
    李甜甜, 胡泓, 王金爽, 等. 湿地土壤微生物群落结构与多样性分析方法研究进展[J]. 土壤通报,2016,47(3):758−762. [LI T T, HU H, WANG J S, et al. Progress in research methods of soil microbial structure and diversity in wetlands[J]. Chinese Journal of Soil Science,2016,47(3):758−762. doi: 10.19336/j.cnki.trtb.2016.03.38

    LI T T, HU H, WANG J S, et al. Progress in Research Methods of Soil Microbial Structure and Diversity in Wetlands. [J]. Chinese Journal of Soil Science, 2016, 47(3): 758-762. doi: 10.19336/j.cnki.trtb.2016.03.38
    [38]
    HONG P, YAO X, CHEN W, et al. Dissecting complicated viral spreading of enterovirus 71 using in situ bioorthogonal fluorescent labeling[J]. Biomaterials,2018,181:199−209. doi: 10.1016/j.biomaterials.2018.07.061
    [39]
    HUBER D, VOITH VON VOITHENBERG L, KAIGALA G V. Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH?[J]. Micro and Nano Engineering,2018,1:15−24. doi: 10.1016/j.mne.2018.10.006
    [40]
    CUI C, SHU W, LI P. Fluorescence in situ hybridization: Cell-based genetic diagnostic and research applications[J]. Frontiers in Cell and Developmental Biology,2016:4.
    [41]
    宋伟凤, 李明聪, 高峥. 环境中微生物原位检测方法研究进展[J]. 生物技术通报,2017,33(10):26−32. [SONG W F, LI M C, GAO Z. Research progress onin situ detection methods of microorganisms[J]. Biotechnology Bulletin,2017,33(10):26−32. doi: 10.13560/j.cnki.biotech.bull.1985.2017-0550

    SONG W F, LI M C, GAO Z. Research Progress on in situ Detection Methods of Microorganisms[J]. Biotechnology Bulletin, 2017, 33(10): 26-32. doi: 10.13560/j.cnki.biotech.bull.1985.2017-0550
    [42]
    CHU Y H, HARDIN H, ZHANG R R, et al. In situ hybridization: Introduction to techniques, applications and pitfalls in the performance and interpretation of assays[J]. Seminars in Diagnostic Pathology,2019,36(5):336−341. doi: 10.1053/j.semdp.2019.06.004
    [43]
    ZHANG B, MAIMAITI Y, LIU C, et al. Direct detection of Staphylococcus aureus in positive blood cultures through molecular beacon-based fluorescence in situ hybridization[J]. Journal of Microbiological Methods,2019,159:34−41. doi: 10.1016/j.mimet.2019.02.007
    [44]
    SALIMI G, MOUSAVI E, KIANI H. Efficiency of fluorescence in situ hybridization (FISH) method for the rapid detection of Salmonella in minced lamb meat: Method analysis and optimization[J]. Journal of Microbiological Methods,2020,175:105989. doi: 10.1016/j.mimet.2020.105989
    [45]
    BALIGA S, MURPHY C, SHARON L, et al. Rapid method for detecting and differentiating Mycobacterium tuberculosis complex and non-tuberculous mycobacteria in sputum by fluorescence in situ hybridization with DNA probes[J]. International Journal of Infectious Diseases,2018,75:1−7. doi: 10.1016/j.ijid.2018.07.011
    [46]
    TANG Y, ZOU B, WANG R, et al. Multiplex-invasive reaction-assisted qPCR for quantitatively detecting the abundance of EGFR exon 19 deletions in cfDNA[J]. Analytical Methods,2020:12.
    [47]
    BAHLINGER E, DORN-IN S, BEINDORF P M, et al. Development of two specific multiplex qPCRs to determine amounts of Pseudomonas, Enterobacteriaceae, Brochothrix thermosphacta andStaphylococcus in meat and heat-treated meat products[J]. International Journal of Food Microbiology,2020:337.
    [48]
    PANCZA B, SZATHMÁRY M, GYURJÁN I, et al. A rapid and efficient DNA isolation method for qPCR-based detection of pathogenic and spoilage bacteria in milk[J]. Food Control,2021:108236.
    [49]
    BROTONS P, PEREZ-ARGÜELLO A, LAUNES C, et al. Validation and implementation of a direct RT-qPCR method for rapid screening of SARS-CoV-2 infection by using non-invasive saliva samples[J]. Journals & Books,2021,110:363−370.
    [50]
    REON B J, DUTTA A. Biological processes discovered by high-throughput sequencing[J]. American Journal of Pathology,2016:722−732.
    [51]
    TREMBLAY J, SINGH K, FERN A, et al. Primer and platform effects on 16S rRNA tag sequencing[J]. Frontiers in Microbiology,2015,6:771.
    [52]
    周天慈, 何宏魁, 徐岩, 等. 基于高通量扩增子测序技术解析中高温大曲微生物来源[J]. 食品与发酵工业, 2021, 47(16): 66−71.

    ZHOU T C, HE H K, XU Y, et al. Exploring the source of microbiota in medium-high temperature daqu based on high-throughput amplicon sequencing[J]. Food and Fermentation Industries, 2021, 47(16): 66−71.
    [53]
    ZHAO Y J, WEI W L, TANG L, et al. Characterization of aroma and bacteria profiles of Sichuan industrial paocai by HS-SPME-GC-O-MS and 16S rRNA amplicon sequencing[J]. Food Research International, 2021(149).
    [54]
    KAMIMURA B A, CABRAL L, NORONHA M F, et al. Amplicon sequencing reveals the bacterial diversity in milk, dairy premises and Serra da Canastra artisanal cheeses produced by three different farms[J]. Food Microbiology,2020,89(Aug.):103453.1−103453.12.
    [55]
    BLAMEY J M, FISCHER F, MEYER H P, et al. Enzymatic biocatalysis in chemical transformations: A promising and emerging field in green chemistry practice-ScienceDierct[J]. Biotechnology of Microbial Enzymes,2017:347−403.
    [56]
    HUANG Y H, YI Z L, JIN Y L, et al. Metatranscriptomics reveals the functions and enzyme profiles of the microbial community in Chinese Nong-flavor liquor starter[J]. Frontiers in Microbiology,2017,8:1747. doi: 10.3389/fmicb.2017.01747
    [57]
    王正, 吴群, 徐岩, 等. 谷物蛋白对白酒发酵过程中微生物群落及其代谢多样性的调控[J]. 微生物学通报,2021(48):4167−4177. [WANG Z, WU Q, XU Y, et al. The regulation of grain protein on the microbial community and metabolic diversity in the process of liquor fermentation[J]. Microbiology China,2021(48):4167−4177. doi: 10.13344/j.microbiol.china.210228

    WANG Z, WU Q, XU Y, et al. The regulation of grain protein on the microbial community and metabolic diversity in the process of liquor fermentation[J]. Microbiology China, 2021, 1-10. doi: 10.13344/j.microbiol.china.210228
    [58]
    WANG B W, WU Q, XU Y, et al. Specific volumetric weight-driven shift in microbiota compositions with saccharifying activity change in starter for chinese baijiu fermentation[J]. Frontiers in Microbiology,2018,9:2349. doi: 10.3389/fmicb.2018.02349
    [59]
    LU X W, WU Q, XU Y, et al. Genomic and transcriptomic analyses of the Chinese Maotai-flavored liquor yeast MT1 revealed its unique multi-carbon co-utilization[J]. Bmc Genomics,2015,16(1):1−14. doi: 10.1186/1471-2164-16-1
    [60]
    TANG R Q, YE P L, ALPER H S, et al. Identification and characterization of novel xylose isomerases from a Bos taurus fecal metagenome[J]. Applied Microbiology and Biotechnology,2019,103(11):1−13.
    [61]
    王禄禄, 王立志, 周美丽. 宏基因组学技术在反刍动物瘤胃微生态系统上的应用研究进展[J]. 中国微生态学杂志,2017,29(2):223−228. [WANG L L, WANG L Z, ZHOU M L. Application of metagenomics technology on the microecological system in rumen of ruminant: Research progress[J]. Chinese Journal of Microbiology,2017,29(2):223−228. doi: 10.13381/j.cnki.cjm.201702028

    WANG L L, WANG L Z, ZHOU M L. Application of metagenomics technology on the microecological system in rumen of ruminant: Research progress[J]. Chinese Journal of Microbiology, 2017, 29(02): 223-228. doi: 10.13381/j.cnki.cjm.201702028
    [62]
    ALI A, CHRISTOPHERSEN C T, KEELAN J A. Vaginal microbial profiling in a preterm birth high-risk cohort using shallow shotgun metagenomics[J]. Microbiology Australia, 2021, 42(2): 69-74.
    [63]
    BEI Q H, PENG J J, LIESACK W. Shedding light on the functional role of the Ignavibacteria in Italian rice field soil: A meta-genomic/transcriptomic analysis[J]. Soil Biology and Biochemistry,2021:163.
    [64]
    MOJIB N, THIMMA M, KUMARAN M, et al. Comparative metatranscriptomics reveals decline of a neustonic planktonic population[J]. Limnology and Oceanography,2017,62:299−310. doi: 10.1002/lno.10395
    [65]
    RIPPIN M, BORCHHARDT N, WILLIAMS L, et al. Genus richness of microalgae and cyanobacteria in biological soil crusts from svalbard and livingston island: morphological versus molecular approaches[J]. Polar Biology,2018,41(5):1−15.
    [66]
    LI F, NEVES ALA, GHOSHAL B, et al. Symposium review: mining metagenomic and metatranscriptomic data for clues about microbial metabolic functions in ruminants[J]. Journal of Dairy Science,2018,101(6):5605−5618. doi: 10.3168/jds.2017-13356
    [67]
    雷忠华, 陈聪聪, 陈谷. 基于宏基因组和宏转录组的发酵食品微生物研究进展[J]. 食品科学,2018,39(3):330−337. [LEI Z H, CHEN C C, CHEN G. Metagenomic and metatranscriptomic analysis of microbiota in fermented foods: Review of recent advances[J]. Food Science,2018,39(3):330−337. doi: 10.7506/spkx1002-6630-201803049

    LEI Z H, CHEN C C, CHEN G. Metagenomic and metatranscriptomic analysis of microbiota in fermented foods: review of recent advances[J]. Food Science, 2018, 39(3): 330-337. doi: 10.7506/spkx1002-6630-201803049
    [68]
    DESANTIS T Z, BRODIE E L, MOBERG J P, et al. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment[J]. Microbial Ecology, 2007, 53(3): 371−383.
    [69]
    TAGUCHI T, ISHIKAWA M, ICHIKAWA M, et al. Amplification-free detection of bacterial genes using a signaling probe-based DNA microarray [J]. Biosensors and Bioelectronics, 2021, 194(113659).
    [70]
    SHIN S Y, KIM D M, JO Y, et al. DNA Microarray-based detection of bacteria in samples containing antibiotics: Effect of antibiotics on the performance of pathogen detection assays[J]. Biotechnology and Bioprocess Engineering,2021,26(3):447−455. doi: 10.1007/s12257-020-0342-9
    [71]
    SOHRABI H, CANNIZZO F T, PREGEL P, et al. Tissue and species identification in minced meat and meat products from Italian commercial markets by DNA microarray and histological approach [J].Veterinaria Italiana, 2020, 56(2): 77−85.
    [72]
    TAN K T, DING L W, WU C S, et al. Repurposing RNA sequencing for discovery of RNA modifications in clinical cohorts[J]. Science Advances,2021,7(32):1−26.
    [73]
    KIM N Y, LEE H J, KIM H S, et al. Identification of plant viruses infecting pear using RNA sequencing[J]The Plant Pathology Journal, 2021, 37(3): 258−267.
    [74]
    REN Q D, WEI F Q, YUAN C, et al. The effects of removing dead bacteria by propidium monoazide on the profile of salivary microbiome[J]. BMC Oral Health,2021,460:21.
    [75]
    MIOTTO M, BARRETTA C, OSSAi S O, et al. Optimization of a propidium monoazide-qPCR method for Escherichia coli quantification in raw seafood[J]. International Journal of Food Microbiology,2019,318:108467.
    [76]
    ZHAO S, ZHANG J Y, LI Z, et al. Enumeration of viable non-culturable vibrio cholerae using droplet digital PCR combined with propidium monoazide treatment[J]. Frontiers in Cellular and Infection Microbiology,2021,11:753078. doi: 10.3389/fcimb.2021.753078
    [77]
    KERKVLIET J, ARTHUR D F, MICHIEL V W, et al. The Bellerophon pipeline, improving de novo transcriptomes and removing chimeras[J]. Ecology and Evolution, 2019, 9(18): 10513-10521.
    [78]
    EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011.
    [79]
    FITZPATRICK A H, RUPNIK A, O'SHEA H, et al. High throughput sequencing for the detection and characterization of RNA viruses[J]. Frontiers in Microbiology,2021,12:621719. doi: 10.3389/fmicb.2021.621719
  • Cited by

    Periodical cited type(7)

    1. 吴敏,黄娟,石桃雄,朱丽伟,邓娇,梁成刚,汪燕,刘飞,李荣,蔡芳,陈庆富. 应用CRISPR/Cas9基因编辑技术获得高直链淀粉水稻种质. 福建农业学报. 2024(01): 17-24 .
    2. 郭增辉,韩洁楠,李冉,上官小川,刘仕缘,刘德斌,徐晶宇,李明顺,李新海. Ae1-5180高直链淀粉玉米近等基因系农艺性状与子粒品质分析. 玉米科学. 2024(04): 31-38 .
    3. 吴建国,洪雁,顾正彪,程力,李兆丰,李才明,班宵逢. OSA改性高直链玉米淀粉复合疏水膜的制备及性能研究. 中国塑料. 2024(10): 23-28 .
    4. 刘雨霏,罗慧琳,陈响,潘云云,申雨韩,张浩宇,姚长洪. 高直链淀粉的生物合成和应用研究进展. 化学与生物工程. 2023(02): 1-8+15 .
    5. 陈书明,张宁. 低GI面条的研制及其体外淀粉消化特性研究. 中国食品添加剂. 2023(05): 119-132 .
    6. 王婷婷,康志敏,张康逸,何梦影,张国治. 内源性成分对低GI挂面消化特性的影响. 食品工业科技. 2023(12): 1-9 . 本站查看
    7. 程伟琴,杨鹏飞,冯明,霍二福,倪中海. 高直链淀粉/聚乳酸接枝共聚物的制备及性能研究. 塑料科技. 2023(10): 77-80 .

    Other cited types(18)

Catalog

    Article Metrics

    Article views (364) PDF downloads (57) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return