CAO Mengmeng, LIU Yikun, CHEN Xing, et al. Research Progress on Emulsion-based Delivery Systems Produced from Dynamic High Pressure Microfluidization[J]. Science and Technology of Food Industry, 2022, 43(18): 474−482. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090056.
Citation: CAO Mengmeng, LIU Yikun, CHEN Xing, et al. Research Progress on Emulsion-based Delivery Systems Produced from Dynamic High Pressure Microfluidization[J]. Science and Technology of Food Industry, 2022, 43(18): 474−482. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090056.

Research Progress on Emulsion-based Delivery Systems Produced from Dynamic High Pressure Microfluidization

More Information
  • Received Date: September 05, 2021
  • Available Online: July 06, 2022
  • Dynamic high pressure microfluidization (DHPM) is a newly developed food processing technology, it has important applications in the preparation process of emulsification, homogenization and refinement of delivery systems due to its strong shearing, crushing, high-velocity impact, cavitation, oscillation and expansion. Herein, technologies of emulsification and homogenization, technical characteristics of emulsion preparation using DHPM, and the applications of DHPM in the preparation of emulsion-based delivery systems are summarized, to provide theoretical reference for promoting the progress of DHPM and the industrial production of emulsion-based delivery systems.
  • [1]
    马金菊, 马李一, 李凯, 等. 虫白蜡高级烷醇微乳液的制备及其在功能饮料中的应用[J]. 食品科学,2019,40(12):78−84. [MA J J, MA L Y, LI K, et al. Preparation of microemulsion with policosanol derived from insect wax and its application in functional beverage[J]. Food Science,2019,40(12):78−84. doi: 10.7506/spkx1002-6630-20181028-321

    MA J J, MA L Y, LI K, et al. Preparation of microemulsion with policosanol derived from insect wax and its application in functional beverage [J]. Food Science, 2019, 40(12): 78-84. doi: 10.7506/spkx1002-6630-20181028-321
    [2]
    杜冠华. 金针菇纳米多糖颗粒的Pickering乳化性能研究[D]. 天津: 天津科技大学, 2017

    DU G H. Pickering emulsifying properties of flammulina velutipes polysaccharide nanoparticles [D]. Tianjin: Tianjin University of Science and Technology, 2017.
    [3]
    CHEN X, CHEN Y, HUANG Y T, et al. Hybrid bionanoparticle-stabilized Pickering emulsions for quercetin delivery: Effect of interfacial composition on release, lipolysis, and bioaccessibility[J]. Acs Applied Nano Materials,2019,2(10):6462−6472. doi: 10.1021/acsanm.9b01413
    [4]
    MCCLEMENTS D J. Food emulsions: principles, practices, and techniques [M]. 3th ed. Boca Raton, Fl: CRC press, 2015.
    [5]
    MCCLEMENTS D J. Emulsion design to improve the delivery of functional lipophilic components[J]. Annual Review of Food Science and Technology,2010(1):241−269.
    [6]
    MCCLEMENTS D J, GUMUS C E. Natural emulsifiers-biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance[J]. Advances in Colloid and Interface Science,2016,234:3−26. doi: 10.1016/j.cis.2016.03.002
    [7]
    刘伟, 李火坤, 刘成梅, 等. 基于FLUENT的动态高压微射流内部孔道流场的数值模拟[J]. 高压物理学报,2012,26(1):113−120. [LIU W, LI H K, LIU C M, et al. Numerical simulation of microchannel of dynamic high-pressure microfluidization based on FLUENT[J]. Chinese Journal of High Pressure Physics,2012,26(1):113−120. doi: 10.11858/gywlxb.2012.01.017

    LIU W, LI H K, LIU C M, et al. Numerical simulation of microchannel of dynamic high-pressure microfluidization based on FLUENT [J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 113-120. doi: 10.11858/gywlxb.2012.01.017
    [8]
    CHOI Y T, EGAASSER M S, SUDOL E D, et al. Polymerization of styrene miniemulsions[J]. Journal of Polymer Science:Polymer Chemistry Edition,1985,23:2973−2987. doi: 10.1002/pol.1985.170231206
    [9]
    CHANDONNET S, KORSTVEDT H, SICILIANO A A. Preparation of microemulsions by microfluidization[J]. Soap Cosmetics Chemical Specialties,1985,61(2):37−38.
    [10]
    OZA K P, FRANK S G. Microcrystalline cellulose stabilized emulsions[J]. Journal of Dispersion Science and Technology,1986,7(5):543−561. doi: 10.1080/01932698608943478
    [11]
    SILVESTRI S L, LOSTRITTO R T. Theoretical evaluation of dispersed droplet radii in submicron oil-in-water emulsions[J]. International Journal of Pharmaceutics,1989,50(2):141−146. doi: 10.1016/0378-5173(89)90138-5
    [12]
    OZTURK O K, TURASAN H. Applications of microfluidization in emulsion-based systems, nanoparticle formation, and beverages[J]. Trends in Food Science & Technology,2021,116:609−625.
    [13]
    GUO X, ZHAO W, LIAO X, et al. Extraction of pectin from the peels of pomelo by high-speed shearing homogenization and its characteristics[J]. LWT-Food Science and Technology,2017,79:640−646. doi: 10.1016/j.lwt.2016.12.001
    [14]
    沈培玉, 吴小鸣, 宋明淦, 等. 高剪切均质机搅拌叶轮结构参数分析[J]. 粮食与饲料工业,2000(6):49−51. [SHEN P Y, WU X M, SONG M G, et al. Analysis of the structure parameters of blade rotor in high-shearing homogenizer[J]. Cereal & Feed Industry,2000(6):49−51. doi: 10.3969/j.issn.1003-6202.2000.06.022

    SHEN P Y, WU X M, SONG M G, et al. Analysis of the structure parameters of blade rotor in high-shearing homogenizer [J]. Cereal & Feed Industry, 2000(6): 49-51. doi: 10.3969/j.issn.1003-6202.2000.06.022
    [15]
    ZHOU L, FENG X, YANG Y, et al. Effects of high-speed shear homogenization on properties and structure of the chicken myofibrillar protein and low-fat mixed gel[J]. LWT-Food Science and Technology,2019,110:19−24. doi: 10.1016/j.lwt.2019.04.061
    [16]
    WANG P P, LUO Z G, CHUN C, et al. Effects of octenyl succinic anhydride groups distribution on the storage and shear stability of Pickering emulsions formulated by modified rice starch[J]. Carbohydrate Polymers,2020,228:115389. doi: 10.1016/j.carbpol.2019.115389
    [17]
    ZHU Y Q, CHEN X, MCCLEMENTS D J, et al. Pickering-stabilized emulsion gels fabricated from wheat protein nanoparticles: Effect of pH, NaCl and oil content[J]. Journal of Dispersion Science and Technology,2017,39(6):826−835.
    [18]
    CHEN X, MCCLEMENTS D J, WANG J, et al. Coencapsulation of (-)-epigallocatechin-3-gallate and quercetin in particle-stabilized W/O/W emulsion gels: Controlled release and bioaccessibility[J]. Journal of Agricultural and Food Chemistry,2018,66(14):3691−3699. doi: 10.1021/acs.jafc.7b05161
    [19]
    谢安琪, 邓苏梦, 左白露, 等. 面筋蛋白粒子-黄原胶Pickering乳液的制备及其表征[J]. 食品科学,2019,40(16):38−44. [XIE A Q, DENG S M, ZUO B L, et al. Preparation and characterization of wheat gluten nanoparticles-xanthan gum Pickering emulsions[J]. Food Science,2019,40(16):38−44. doi: 10.7506/spkx1002-6630-20180709-111

    XIE A Q, DENG S M, ZUO B L, et al. Preparation and characterization of wheat gluten nanoparticles-xanthan gum Pickering emulsions [J]. Food Science, 2019, 40(16): 38-44. doi: 10.7506/spkx1002-6630-20180709-111
    [20]
    LIU W, GAO H X, MCCLEMENTS D J, et al. Stability, rheology, and β-carotene bioaccessibility of high internal phase emulsion gels[J]. Food Hydrocolloids,2019,88:210−217. doi: 10.1016/j.foodhyd.2018.10.012
    [21]
    YAN C, MCCLEMENTS D J, ZHU Y, et al. Fabrication of OSA starch/chitosan polysaccharide-based high internal phase emulsion via altering interfacial behaviors[J]. Journal of Agricultural and Food Chemistry,2019,67(39):10937−10946. doi: 10.1021/acs.jafc.9b04009
    [22]
    LIU Y, YAN C, CHEN J, et al. Enhancement of beta-carotene stability by encapsulation in high internal phase emulsions stabilized by modified starch and tannic acid[J]. Food Hydrocolloids,2020,109:106083. doi: 10.1016/j.foodhyd.2020.106083
    [23]
    CHENG C, WU Z, WANG Y, et al. Tunable high internal phase emulsions (HIPEs) formulated using lactoferrin-gum arabic complexes[J]. Food Hydrocolloids,2021,113:106445. doi: 10.1016/j.foodhyd.2020.106445
    [24]
    GUO Y, WU C, DU M, et al. In-situ dispersion of casein to form nanoparticles for Pickering high internal phase emulsions[J]. LWT-Food Science and Technology,2021,139:110538. doi: 10.1016/j.lwt.2020.110538
    [25]
    SCHUCH A, WRENGER J, SCHUCHMANN H P. Production of W/O/W double emulsions. Part II: Influence of emulsification device on release of water by coalescence[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,461:344−351. doi: 10.1016/j.colsurfa.2013.11.044
    [26]
    NEUMANN S M, WITTSTOCK N, VAN DER SCHAAF U S, et al. Interactions in water in oil in water double emulsions: Systematical investigations on the interfacial properties and emulsion structure of the outer oil in water emulsion[J]. Colloids and Surfaces A,2018,537:524−531. doi: 10.1016/j.colsurfa.2017.10.070
    [27]
    BAUDRON V, GURIKOV P, SMIRNOVA I. A continuous approach to the emulsion gelation method for the production of aerogel micro-particle[J]. Colloids and Surfaces A,2019,566:58−69. doi: 10.1016/j.colsurfa.2018.12.055
    [28]
    TSIBRANSKA S, TCHOLAKOVA S, GOLEMANOV K, et al. Origin of the extremely high elasticity of bulk emulsions, stabilized by Yucca schidigera saponins[J]. Food Chemistry,2020,316:126365. doi: 10.1016/j.foodchem.2020.126365
    [29]
    GMACH O, BERTSCH A, BILKE-KRAUSE C, et al. Impact of oil type and pH value on oil-in-water emulsions stabilized by egg yolk granules[J]. Colloids and Surfaces A,2019,581:123788. doi: 10.1016/j.colsurfa.2019.123788
    [30]
    HåKANSSON A, TRÄGÅRDH C, BERGENSTåHL B. Dynamic simulation of emulsion formation in a high pressure homogenizer[J]. Chemical Engineering Science,2009,64(12):2915−2925. doi: 10.1016/j.ces.2009.03.034
    [31]
    HEBISHY E, BUFFA M, GUAMIS B, et al. Physical and oxidative stability of whey protein oil-in-water emulsions produced by conventional and ultra high-pressure homogenization: Effects of pressure and protein concentration on emulsion characteristics[J]. Innovative Food Science & Emerging Technologies,2015,32:79−90.
    [32]
    FLOURY J, DESRUMAUX A, LARDIÈRES J. Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions[J]. Innovative Food Science & Emerging Technologies,2000,1(2):127−134.
    [33]
    齐凤敏, 王来忠, 张佳佳, 等. 不同均质方式对红花籽油O/W乳液乳化效果的影响[J]. 食品工业,2020,41(12):8−11. [QI F M, WANG L Z, ZHANG J J, et al. Effects of different homogenization methods on O/W emulsion emulsification of safflower seed oil[J]. The Food Industry,2020,41(12):8−11.

    QI F M, WANG L Z, ZHANG J J, et al. Effects of different homogenization methods on O/W emulsion emulsification of safflower seed oil [J]. The Food Industry, 2020, 41(12): 8-11.
    [34]
    BENITEZ L O, CASTAGNINI J M, AñóN M C, et al. Development of oil-in-water emulsions based on rice bran oil and soybean meal as the basis of food products able to be included in ketogenic diets[J]. LWT-Food Science and Technology,2020,118:108809. doi: 10.1016/j.lwt.2019.108809
    [35]
    陈雨露, 吕沛峰, 袁芳. 新型番茄红素微胶囊的制备及稳定性评价[J]. 食品科学,2021,42(19):134−140. [CHEN Y L, LV P F, YUAN F. Preparation and stability evaluation of novel lycopene microcapsules[J]. Food Science,2021,42(19):134−140. doi: 10.7506/spkx1002-6630-20200907-098

    CHEN Y L, LV P F, YUAN F. Preparation and stability evaluation of novel lycopene microcapsules [J]. Food Science, 2021, 42(19): 134-140. doi: 10.7506/spkx1002-6630-20200907-098
    [36]
    LEONG T S H, ZHOU M, KUKAN N, et al. Preparation of water-in-oil-in-water emulsions by low frequency ultrasound using skim milk and sunflower oil[J]. Food Hydrocolloids,2017,63:685−695. doi: 10.1016/j.foodhyd.2016.10.017
    [37]
    SOARES L S, MILIAO G L, TONOLE B, et al. Chitosan dispersed in aqueous solutions of acetic, glycolic, propionic or lactic acid as a thickener/stabilizer agent of O/W emulsions produced by ultrasonic homogenization[J]. Ultrasonics-Sonochemistry,2019,59:104754. doi: 10.1016/j.ultsonch.2019.104754
    [38]
    TAHA A, AHMED E, ISMAIEL A, et al. Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions[J]. Trends in Food Science & Technology,2020,105:363−377.
    [39]
    MAHDI JAFARI S, HE Y, BHANDARI B. Nano-emulsion production by sonication and microfluidization—A comparison[J]. International Journal of Food Properties,2006,9(3):475−485. doi: 10.1080/10942910600596464
    [40]
    JAFARI S M, HE Y, BHANDARI B. Production of sub-micron emulsions by ultrasound and microfluidization techniques[J]. Journal of Food Engineering,2007,82(4):478−488. doi: 10.1016/j.jfoodeng.2007.03.007
    [41]
    PANGU G D, FEKE D L. Kinetics of ultrasonically induced coalescence within oil/water emulsions: Modeling and experimental studies[J]. Chemical Engineering Science,2009,64(7):1445−1454. doi: 10.1016/j.ces.2008.12.004
    [42]
    SHANMUGAM A, ASHOKKUMAR M. Ultrasonic preparation of stable flax seed oil emulsions in dairy systems—Physicochemical characterization[J]. Food Hydrocolloids,2014,39:151−162. doi: 10.1016/j.foodhyd.2014.01.006
    [43]
    吕思伊, 卢琪, 潘思轶. 包封姜黄素的果胶-核桃蛋白复合物乳液稳定性及体外消化[J]. 食品科学,2021,42(8):1−9. [LV S Y, LU Q, PAN S Y. Stability and in vitro digestion of pectin-walnut proteins stabilized emulsions encapsulating curcumin[J]. Food Science,2021,42(8):1−9. doi: 10.7506/spkx1002-6630-20200406-069

    LV S Y, LU Q, PAN S Y. Stability and in vitro digestion of pectin-walnut proteins stabilized emulsions encapsulating curcumin [J]. Food Science, 2021, 42(8): 1-9. doi: 10.7506/spkx1002-6630-20200406-069
    [44]
    陈兴, 邹立强, 刘伟, 等. 动态高压微射流技术制备脂质体的研究进展[J]. 中国农业科技导报,2015,17(5):75−80. [CHEN X, ZOU L Q, LIU W, et al. Research progress on liposome preparation using dynamic high pressure micro-fluidization[J]. Journal of Agricultural Science and Technology,2015,17(5):75−80. doi: 10.13304/j.nykjdb.2015.480

    CHEN X, ZOU L Q, LIU W, et al. Research progress on liposome preparation using dynamic high pressure micro-fluidization [J]. Journal of Agricultural Science and Technology, 2015, 17(5): 75-80. doi: 10.13304/j.nykjdb.2015.480
    [45]
    SADEGHPOUR GALOOYAK S, DABIR B, ZOLFAGHARI M. An innovative numerical approach for simulation of emulsion formation in a microfluidizer[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2015,487:169−179. doi: 10.1016/j.colsurfa.2015.09.059
    [46]
    CHEN X, MCCLEMENTS D J, ZHU Y, et al. Enhancement of the solubility, stability and bioaccessibility of quercetin using protein-based excipient emulsions[J]. Food Research International,2018,114:30−37. doi: 10.1016/j.foodres.2018.07.062
    [47]
    LUO X, ZHOU Y, BAI L, et al. Fabrication of beta-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability[J]. Journal of Colloid and Interface Science,2017,490:328−335. doi: 10.1016/j.jcis.2016.11.057
    [48]
    苏佳琪, 何晓叶, 高彦祥, 等. 动态高压微射流制备β-乳球蛋白纳米乳液[J]. 中国酿造,2015,34(10):98−102. [SU J Q, HE X Y, GAO Y X, et al. Fabrication of β-lactoglobulin nanoemulsions by dynamic high-pressure microfluidization[J]. China Brewing,2015,34(10):98−102. doi: 10.11882/j.issn.0254-5071.2015.10.022

    SU J Q, HE X Y, GAO Y X, et al. Fabrication of β-lactoglobulin nanoemulsions by dynamic high-pressure microfluidization [J]. China Brewing, 2015, 34(10): 98-102. doi: 10.11882/j.issn.0254-5071.2015.10.022
    [49]
    CHEN X, ZOU L Q, LIU W, et al. Potential of excipient emulsions for improving quercetin bioaccessibility and antioxidant activity: An in vitro study[J]. Journal of Agricultural and Food Chemistry,2016,64(18):3653−3660. doi: 10.1021/acs.jafc.6b01056
    [50]
    CHEN X, MCCLEMENTS D J, ZHU Y, et al. Gastrointestinal fate of fluid and gelled nutraceutical emulsions: Impact on proteolysis, lipolysis, and quercetin bioaccessibility[J]. Journal of Agricultural and Food Chemistry,2018,66(34):9087−9096. doi: 10.1021/acs.jafc.8b03003
    [51]
    XU N, WU X L, ZHU Y Q, et al. Enhancing the oxidative stability of algal oil emulsions by adding sweet orange oil: Effect of essential oil concentration[J]. Food Chemistry,2021,355:129508. doi: 10.1016/j.foodchem.2021.129508
    [52]
    LEE L, NORTON I T. Comparing droplet breakup for a high-pressure valve homogeniser and a microfluidizer for the potential production of food-grade nanoemulsions[J]. Journal of Food Engineering,2013,114(2):158−163. doi: 10.1016/j.jfoodeng.2012.08.009
    [53]
    YANG Y, MARSHALL-BRETON C, LESER M E, et al. Fabrication of ultrafine edible emulsions: Comparison of high-energy and low-energy homogenization methods[J]. Food Hydrocolloids,2012,29(2):398−406. doi: 10.1016/j.foodhyd.2012.04.009
    [54]
    TANG S Y, SHRIDHARAN P, SIVAKUMAR M. Impact of process parameters in the generation of novel aspirin nanoemulsions-comparative studies between ultrasound cavitation and microfluidizer[J]. Ultrasonics-Sonochemistry,2013,20(1):485−497. doi: 10.1016/j.ultsonch.2012.04.005
    [55]
    BAI L, LV S, XIANG W, et al. Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability[J]. Food Hydrocolloids,2019,96:699−708. doi: 10.1016/j.foodhyd.2019.04.038
    [56]
    QIAN C, MCCLEMENTS D J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size[J]. Food Hydrocolloids,2011,25(5):1000−1008. doi: 10.1016/j.foodhyd.2010.09.017
    [57]
    SALVIA-TRUJILLO L, ROJAS-GRAü M A, SOLIVA-FORTUNY R, et al. Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions[J]. Food Hydrocolloids,2013,30(1):401−407. doi: 10.1016/j.foodhyd.2012.07.004
    [58]
    LI Y, MCCLEMENTS D J. New mathematical model for interpreting pH-stat digestion profiles: Impact of lipid droplet characteristics on in vitro digestibility[J]. Journal of Agricultural Food Chemistry,2010,58(13):8085−8092. doi: 10.1021/jf101325m
    [59]
    ZHANG R, ZHANG Z, ZOU L, et al. Enhancement of carotenoid bioaccessibility from carrots using excipient emulsions: Influence of particle size of digestible lipid droplets[J]. Food & Function,2016,7(1):93−103.
    [60]
    ZOU L, ZHENG B, LIU W, et al. Enhancing nutraceutical bioavailability using excipient emulsions: Influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin[J]. Journal of Functional Foods,2015,15:72−83. doi: 10.1016/j.jff.2015.02.044
    [61]
    TANG C-H, LIU F. Cold, gel-like soy protein emulsions by microfluidization: Emulsion characteristics, rheological and microstructural properties, and gelling mechanism[J]. Food Hydrocolloids,2013,30(1):61−72. doi: 10.1016/j.foodhyd.2012.05.008
    [62]
    MCCARTHY N A, KENNEDY D, HOGAN S A, et al. Emulsification properties of pea protein isolate using homogenization, microfluidization and ultrasonication[J]. Food Research International,2016,89(1):415−421.
    [63]
    LIU X, LIU Y-Y, GUO J, et al. Microfluidization initiated cross-linking of gliadin particles for structured algal oil emulsions[J]. Food Hydrocolloids,2017,73:153−161. doi: 10.1016/j.foodhyd.2017.07.001
    [64]
    LIU Y, ZHANG W, WANG K, et al. Fabrication of gel-like emulsions with whey protein isolate using microfluidization: Rheological properties and 3D printing performance [J]. Food and Bioprocess Technology, 2019,
    [65]
    TRUJILLO C C, WRIGHT A J. Properties and stability of solid lipid particle dispersions based on canola stearin and poloxamer 188[J]. Journal of the American Oil Chemists’ Society,2010,87(7):715−730. doi: 10.1007/s11746-010-1553-6
    [66]
    HELGASON T, SALMINEN H, KRISTBERGSSON K, et al. Formation of transparent solid lipid nanoparticles by microfluidization: Influence of lipid physical state on appearance[J]. Journal of Colloid and Interface Science,2015,448:114−122. doi: 10.1016/j.jcis.2015.02.010
    [67]
    HELGASON T, AWAD T S, KRISTBERGSSON K, et al. Impact of surfactant properties on oxidative stability of beta-carotene encapsulated within solid lipid nanoparticles[J]. Journal of Agricultural and Food Chemistry,2009,57(17):8033−8040. doi: 10.1021/jf901682m
    [68]
    NIK A M, LANGMAID S, WRIGHT A J. Nonionic surfactant and interfacial structure impact crystallinity and stability of beta-carotene loaded lipid nanodispersions[J]. Journal of Agricultural and Food Chemistry,2012,60(16):4126−4135. doi: 10.1021/jf204810m
    [69]
    CHEN J, WEI N, LOPEZ-GARCIA M, et al. Development and evaluation of resveratrol, vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications[J]. European Journal of Pharmaceutics and Biopharmaceutics,2017,117:286−291. doi: 10.1016/j.ejpb.2017.04.008
    [70]
    JAFARI S M, HE Y, BHANDARI B. Role of powder particle size on the encapsulation efficiency of oils during spray drying[J]. Drying Technology,2007,25(6):1081−1089. doi: 10.1080/07373930701397343
    [71]
    CHEN J, LI F, LI Z, et al. Encapsulation of carotenoids in emulsion-based delivery systems: Enhancement of β-carotene water-dispersibility and chemical stability[J]. Food Hydrocolloids,2017,69:49−55. doi: 10.1016/j.foodhyd.2017.01.024
    [72]
    PEREYRA-CASTRO S C, ALAMILLA-BELTRáN L, VILLALOBOS-CASTILLEJOS F, et al. Microfluidization and atomization pressure during microencapsulation process: Microstructure, hygroscopicity, dissolution and flow properties[J]. LWT-Food Science and Technology,2018,96:378−385. doi: 10.1016/j.lwt.2018.05.042
    [73]
    LIU W, WANG J, MCCLEMENTS D J, et al. Encapsulation of β-carotene-loaded oil droplets in caseinate/alginate microparticles: Enhancement of carotenoid stability and bioaccessibility[J]. Journal of Functional Foods,2018,40:527−535. doi: 10.1016/j.jff.2017.11.046
    [74]
    MA D, TU Z C, WANG H, et al. Microgel-in-microgel biopolymer delivery systems: Controlled digestion of encapsulated lipid droplets under simulated gastrointestinal conditions[J]. Journal of Agricultural and Food Chemistry,2018,66(15):3930−3938. doi: 10.1021/acs.jafc.8b00132
    [75]
    ZHANG Z, JUNG K J, ZHANG R, et al. In situ monitoring of lipid droplet release from biopolymer microgels under simulated gastric conditions using magnetic resonance imaging and spectroscopy[J]. Food Research International,2019,123:181−188. doi: 10.1016/j.foodres.2019.04.063
    [76]
    IMRAN M, REVOL-JUNELLES A-M, PARIS C, et al. Liposomal nanodelivery systems using soy and marine lecithin to encapsulate food biopreservative nisin[J]. LWT-Food Science and Technology,2015,62(1):341−349. doi: 10.1016/j.lwt.2014.12.046
  • Cited by

    Periodical cited type(9)

    1. 吴军林,徐梅珍,蒋桂丽,杨华. 食品微生物学课程教学创新性探索及思考. 食品工业. 2025(02): 142-146 .
    2. 李向梅,朱月,柳春红,徐振林,雷红涛,钟青萍. 课程思政视域下“食品卫生学”案例教学改革与育人效果评价. 食品工业. 2025(02): 237-242 .
    3. 王丽娜,罗志. 土壤环境监测课程思政元素的挖掘与教学实施探索. 现代商贸工业. 2024(12): 261-263 .
    4. 隋晓楠,张妍,黄国,付昳丹,梁香玉,赵尚清,王思琦,杨爱峥,霍俊伟,江连洲. 省一流专业引领下“粮油加工副产物综合利用”课程创新创业元素的设计与实践. 食品工业科技. 2024(13): 308-314 . 本站查看
    5. 关海宁,刁小琴,刘登勇,励建荣,李学鹏,仪淑敏,范金波,赵志南. “乡村振兴”背景下食品类专业型硕士“实践驱动、多维融合、创新引领”协同培养机制的探讨. 食品工业科技. 2024(14): 371-377 . 本站查看
    6. 林鹏,宋姗姗,范金波,李学鹏,励建荣. 基于OBE教学理念对《食品免疫学》课程教学改革与实践. 食品工业科技. 2024(14): 361-370 . 本站查看
    7. 张妍,杨景旭,隋晓楠. “园艺产品采后生理及贮运加工”课程建设与创新. 食品工业. 2024(07): 221-225 .
    8. 张晶,施行健,郁舒兰. 交互设计类课程中的思政元素挖掘与融合路径探索. 设计. 2024(17): 74-77 .
    9. 解文丽,郭俊南,王晖,温清苹. 课程思政的实践探索——以《海水利用技术》为例. 广东化工. 2023(19): 170-173+151 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (418) PDF downloads (32) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return