CAO Mengmeng, LIU Yikun, CHEN Xing, et al. Research Progress on Emulsion-based Delivery Systems Produced from Dynamic High Pressure Microfluidization[J]. Science and Technology of Food Industry, 2022, 43(18): 474−482. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090056.
Citation: CAO Mengmeng, LIU Yikun, CHEN Xing, et al. Research Progress on Emulsion-based Delivery Systems Produced from Dynamic High Pressure Microfluidization[J]. Science and Technology of Food Industry, 2022, 43(18): 474−482. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090056.

Research Progress on Emulsion-based Delivery Systems Produced from Dynamic High Pressure Microfluidization

More Information
  • Received Date: September 05, 2021
  • Available Online: July 06, 2022
  • Dynamic high pressure microfluidization (DHPM) is a newly developed food processing technology, it has important applications in the preparation process of emulsification, homogenization and refinement of delivery systems due to its strong shearing, crushing, high-velocity impact, cavitation, oscillation and expansion. Herein, technologies of emulsification and homogenization, technical characteristics of emulsion preparation using DHPM, and the applications of DHPM in the preparation of emulsion-based delivery systems are summarized, to provide theoretical reference for promoting the progress of DHPM and the industrial production of emulsion-based delivery systems.
  • [1]
    马金菊, 马李一, 李凯, 等. 虫白蜡高级烷醇微乳液的制备及其在功能饮料中的应用[J]. 食品科学,2019,40(12):78−84. [MA J J, MA L Y, LI K, et al. Preparation of microemulsion with policosanol derived from insect wax and its application in functional beverage[J]. Food Science,2019,40(12):78−84. doi: 10.7506/spkx1002-6630-20181028-321

    MA J J, MA L Y, LI K, et al. Preparation of microemulsion with policosanol derived from insect wax and its application in functional beverage [J]. Food Science, 2019, 40(12): 78-84. doi: 10.7506/spkx1002-6630-20181028-321
    [2]
    杜冠华. 金针菇纳米多糖颗粒的Pickering乳化性能研究[D]. 天津: 天津科技大学, 2017

    DU G H. Pickering emulsifying properties of flammulina velutipes polysaccharide nanoparticles [D]. Tianjin: Tianjin University of Science and Technology, 2017.
    [3]
    CHEN X, CHEN Y, HUANG Y T, et al. Hybrid bionanoparticle-stabilized Pickering emulsions for quercetin delivery: Effect of interfacial composition on release, lipolysis, and bioaccessibility[J]. Acs Applied Nano Materials,2019,2(10):6462−6472. doi: 10.1021/acsanm.9b01413
    [4]
    MCCLEMENTS D J. Food emulsions: principles, practices, and techniques [M]. 3th ed. Boca Raton, Fl: CRC press, 2015.
    [5]
    MCCLEMENTS D J. Emulsion design to improve the delivery of functional lipophilic components[J]. Annual Review of Food Science and Technology,2010(1):241−269.
    [6]
    MCCLEMENTS D J, GUMUS C E. Natural emulsifiers-biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance[J]. Advances in Colloid and Interface Science,2016,234:3−26. doi: 10.1016/j.cis.2016.03.002
    [7]
    刘伟, 李火坤, 刘成梅, 等. 基于FLUENT的动态高压微射流内部孔道流场的数值模拟[J]. 高压物理学报,2012,26(1):113−120. [LIU W, LI H K, LIU C M, et al. Numerical simulation of microchannel of dynamic high-pressure microfluidization based on FLUENT[J]. Chinese Journal of High Pressure Physics,2012,26(1):113−120. doi: 10.11858/gywlxb.2012.01.017

    LIU W, LI H K, LIU C M, et al. Numerical simulation of microchannel of dynamic high-pressure microfluidization based on FLUENT [J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 113-120. doi: 10.11858/gywlxb.2012.01.017
    [8]
    CHOI Y T, EGAASSER M S, SUDOL E D, et al. Polymerization of styrene miniemulsions[J]. Journal of Polymer Science:Polymer Chemistry Edition,1985,23:2973−2987. doi: 10.1002/pol.1985.170231206
    [9]
    CHANDONNET S, KORSTVEDT H, SICILIANO A A. Preparation of microemulsions by microfluidization[J]. Soap Cosmetics Chemical Specialties,1985,61(2):37−38.
    [10]
    OZA K P, FRANK S G. Microcrystalline cellulose stabilized emulsions[J]. Journal of Dispersion Science and Technology,1986,7(5):543−561. doi: 10.1080/01932698608943478
    [11]
    SILVESTRI S L, LOSTRITTO R T. Theoretical evaluation of dispersed droplet radii in submicron oil-in-water emulsions[J]. International Journal of Pharmaceutics,1989,50(2):141−146. doi: 10.1016/0378-5173(89)90138-5
    [12]
    OZTURK O K, TURASAN H. Applications of microfluidization in emulsion-based systems, nanoparticle formation, and beverages[J]. Trends in Food Science & Technology,2021,116:609−625.
    [13]
    GUO X, ZHAO W, LIAO X, et al. Extraction of pectin from the peels of pomelo by high-speed shearing homogenization and its characteristics[J]. LWT-Food Science and Technology,2017,79:640−646. doi: 10.1016/j.lwt.2016.12.001
    [14]
    沈培玉, 吴小鸣, 宋明淦, 等. 高剪切均质机搅拌叶轮结构参数分析[J]. 粮食与饲料工业,2000(6):49−51. [SHEN P Y, WU X M, SONG M G, et al. Analysis of the structure parameters of blade rotor in high-shearing homogenizer[J]. Cereal & Feed Industry,2000(6):49−51. doi: 10.3969/j.issn.1003-6202.2000.06.022

    SHEN P Y, WU X M, SONG M G, et al. Analysis of the structure parameters of blade rotor in high-shearing homogenizer [J]. Cereal & Feed Industry, 2000(6): 49-51. doi: 10.3969/j.issn.1003-6202.2000.06.022
    [15]
    ZHOU L, FENG X, YANG Y, et al. Effects of high-speed shear homogenization on properties and structure of the chicken myofibrillar protein and low-fat mixed gel[J]. LWT-Food Science and Technology,2019,110:19−24. doi: 10.1016/j.lwt.2019.04.061
    [16]
    WANG P P, LUO Z G, CHUN C, et al. Effects of octenyl succinic anhydride groups distribution on the storage and shear stability of Pickering emulsions formulated by modified rice starch[J]. Carbohydrate Polymers,2020,228:115389. doi: 10.1016/j.carbpol.2019.115389
    [17]
    ZHU Y Q, CHEN X, MCCLEMENTS D J, et al. Pickering-stabilized emulsion gels fabricated from wheat protein nanoparticles: Effect of pH, NaCl and oil content[J]. Journal of Dispersion Science and Technology,2017,39(6):826−835.
    [18]
    CHEN X, MCCLEMENTS D J, WANG J, et al. Coencapsulation of (-)-epigallocatechin-3-gallate and quercetin in particle-stabilized W/O/W emulsion gels: Controlled release and bioaccessibility[J]. Journal of Agricultural and Food Chemistry,2018,66(14):3691−3699. doi: 10.1021/acs.jafc.7b05161
    [19]
    谢安琪, 邓苏梦, 左白露, 等. 面筋蛋白粒子-黄原胶Pickering乳液的制备及其表征[J]. 食品科学,2019,40(16):38−44. [XIE A Q, DENG S M, ZUO B L, et al. Preparation and characterization of wheat gluten nanoparticles-xanthan gum Pickering emulsions[J]. Food Science,2019,40(16):38−44. doi: 10.7506/spkx1002-6630-20180709-111

    XIE A Q, DENG S M, ZUO B L, et al. Preparation and characterization of wheat gluten nanoparticles-xanthan gum Pickering emulsions [J]. Food Science, 2019, 40(16): 38-44. doi: 10.7506/spkx1002-6630-20180709-111
    [20]
    LIU W, GAO H X, MCCLEMENTS D J, et al. Stability, rheology, and β-carotene bioaccessibility of high internal phase emulsion gels[J]. Food Hydrocolloids,2019,88:210−217. doi: 10.1016/j.foodhyd.2018.10.012
    [21]
    YAN C, MCCLEMENTS D J, ZHU Y, et al. Fabrication of OSA starch/chitosan polysaccharide-based high internal phase emulsion via altering interfacial behaviors[J]. Journal of Agricultural and Food Chemistry,2019,67(39):10937−10946. doi: 10.1021/acs.jafc.9b04009
    [22]
    LIU Y, YAN C, CHEN J, et al. Enhancement of beta-carotene stability by encapsulation in high internal phase emulsions stabilized by modified starch and tannic acid[J]. Food Hydrocolloids,2020,109:106083. doi: 10.1016/j.foodhyd.2020.106083
    [23]
    CHENG C, WU Z, WANG Y, et al. Tunable high internal phase emulsions (HIPEs) formulated using lactoferrin-gum arabic complexes[J]. Food Hydrocolloids,2021,113:106445. doi: 10.1016/j.foodhyd.2020.106445
    [24]
    GUO Y, WU C, DU M, et al. In-situ dispersion of casein to form nanoparticles for Pickering high internal phase emulsions[J]. LWT-Food Science and Technology,2021,139:110538. doi: 10.1016/j.lwt.2020.110538
    [25]
    SCHUCH A, WRENGER J, SCHUCHMANN H P. Production of W/O/W double emulsions. Part II: Influence of emulsification device on release of water by coalescence[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,461:344−351. doi: 10.1016/j.colsurfa.2013.11.044
    [26]
    NEUMANN S M, WITTSTOCK N, VAN DER SCHAAF U S, et al. Interactions in water in oil in water double emulsions: Systematical investigations on the interfacial properties and emulsion structure of the outer oil in water emulsion[J]. Colloids and Surfaces A,2018,537:524−531. doi: 10.1016/j.colsurfa.2017.10.070
    [27]
    BAUDRON V, GURIKOV P, SMIRNOVA I. A continuous approach to the emulsion gelation method for the production of aerogel micro-particle[J]. Colloids and Surfaces A,2019,566:58−69. doi: 10.1016/j.colsurfa.2018.12.055
    [28]
    TSIBRANSKA S, TCHOLAKOVA S, GOLEMANOV K, et al. Origin of the extremely high elasticity of bulk emulsions, stabilized by Yucca schidigera saponins[J]. Food Chemistry,2020,316:126365. doi: 10.1016/j.foodchem.2020.126365
    [29]
    GMACH O, BERTSCH A, BILKE-KRAUSE C, et al. Impact of oil type and pH value on oil-in-water emulsions stabilized by egg yolk granules[J]. Colloids and Surfaces A,2019,581:123788. doi: 10.1016/j.colsurfa.2019.123788
    [30]
    HåKANSSON A, TRÄGÅRDH C, BERGENSTåHL B. Dynamic simulation of emulsion formation in a high pressure homogenizer[J]. Chemical Engineering Science,2009,64(12):2915−2925. doi: 10.1016/j.ces.2009.03.034
    [31]
    HEBISHY E, BUFFA M, GUAMIS B, et al. Physical and oxidative stability of whey protein oil-in-water emulsions produced by conventional and ultra high-pressure homogenization: Effects of pressure and protein concentration on emulsion characteristics[J]. Innovative Food Science & Emerging Technologies,2015,32:79−90.
    [32]
    FLOURY J, DESRUMAUX A, LARDIÈRES J. Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions[J]. Innovative Food Science & Emerging Technologies,2000,1(2):127−134.
    [33]
    齐凤敏, 王来忠, 张佳佳, 等. 不同均质方式对红花籽油O/W乳液乳化效果的影响[J]. 食品工业,2020,41(12):8−11. [QI F M, WANG L Z, ZHANG J J, et al. Effects of different homogenization methods on O/W emulsion emulsification of safflower seed oil[J]. The Food Industry,2020,41(12):8−11.

    QI F M, WANG L Z, ZHANG J J, et al. Effects of different homogenization methods on O/W emulsion emulsification of safflower seed oil [J]. The Food Industry, 2020, 41(12): 8-11.
    [34]
    BENITEZ L O, CASTAGNINI J M, AñóN M C, et al. Development of oil-in-water emulsions based on rice bran oil and soybean meal as the basis of food products able to be included in ketogenic diets[J]. LWT-Food Science and Technology,2020,118:108809. doi: 10.1016/j.lwt.2019.108809
    [35]
    陈雨露, 吕沛峰, 袁芳. 新型番茄红素微胶囊的制备及稳定性评价[J]. 食品科学,2021,42(19):134−140. [CHEN Y L, LV P F, YUAN F. Preparation and stability evaluation of novel lycopene microcapsules[J]. Food Science,2021,42(19):134−140. doi: 10.7506/spkx1002-6630-20200907-098

    CHEN Y L, LV P F, YUAN F. Preparation and stability evaluation of novel lycopene microcapsules [J]. Food Science, 2021, 42(19): 134-140. doi: 10.7506/spkx1002-6630-20200907-098
    [36]
    LEONG T S H, ZHOU M, KUKAN N, et al. Preparation of water-in-oil-in-water emulsions by low frequency ultrasound using skim milk and sunflower oil[J]. Food Hydrocolloids,2017,63:685−695. doi: 10.1016/j.foodhyd.2016.10.017
    [37]
    SOARES L S, MILIAO G L, TONOLE B, et al. Chitosan dispersed in aqueous solutions of acetic, glycolic, propionic or lactic acid as a thickener/stabilizer agent of O/W emulsions produced by ultrasonic homogenization[J]. Ultrasonics-Sonochemistry,2019,59:104754. doi: 10.1016/j.ultsonch.2019.104754
    [38]
    TAHA A, AHMED E, ISMAIEL A, et al. Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions[J]. Trends in Food Science & Technology,2020,105:363−377.
    [39]
    MAHDI JAFARI S, HE Y, BHANDARI B. Nano-emulsion production by sonication and microfluidization—A comparison[J]. International Journal of Food Properties,2006,9(3):475−485. doi: 10.1080/10942910600596464
    [40]
    JAFARI S M, HE Y, BHANDARI B. Production of sub-micron emulsions by ultrasound and microfluidization techniques[J]. Journal of Food Engineering,2007,82(4):478−488. doi: 10.1016/j.jfoodeng.2007.03.007
    [41]
    PANGU G D, FEKE D L. Kinetics of ultrasonically induced coalescence within oil/water emulsions: Modeling and experimental studies[J]. Chemical Engineering Science,2009,64(7):1445−1454. doi: 10.1016/j.ces.2008.12.004
    [42]
    SHANMUGAM A, ASHOKKUMAR M. Ultrasonic preparation of stable flax seed oil emulsions in dairy systems—Physicochemical characterization[J]. Food Hydrocolloids,2014,39:151−162. doi: 10.1016/j.foodhyd.2014.01.006
    [43]
    吕思伊, 卢琪, 潘思轶. 包封姜黄素的果胶-核桃蛋白复合物乳液稳定性及体外消化[J]. 食品科学,2021,42(8):1−9. [LV S Y, LU Q, PAN S Y. Stability and in vitro digestion of pectin-walnut proteins stabilized emulsions encapsulating curcumin[J]. Food Science,2021,42(8):1−9. doi: 10.7506/spkx1002-6630-20200406-069

    LV S Y, LU Q, PAN S Y. Stability and in vitro digestion of pectin-walnut proteins stabilized emulsions encapsulating curcumin [J]. Food Science, 2021, 42(8): 1-9. doi: 10.7506/spkx1002-6630-20200406-069
    [44]
    陈兴, 邹立强, 刘伟, 等. 动态高压微射流技术制备脂质体的研究进展[J]. 中国农业科技导报,2015,17(5):75−80. [CHEN X, ZOU L Q, LIU W, et al. Research progress on liposome preparation using dynamic high pressure micro-fluidization[J]. Journal of Agricultural Science and Technology,2015,17(5):75−80. doi: 10.13304/j.nykjdb.2015.480

    CHEN X, ZOU L Q, LIU W, et al. Research progress on liposome preparation using dynamic high pressure micro-fluidization [J]. Journal of Agricultural Science and Technology, 2015, 17(5): 75-80. doi: 10.13304/j.nykjdb.2015.480
    [45]
    SADEGHPOUR GALOOYAK S, DABIR B, ZOLFAGHARI M. An innovative numerical approach for simulation of emulsion formation in a microfluidizer[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2015,487:169−179. doi: 10.1016/j.colsurfa.2015.09.059
    [46]
    CHEN X, MCCLEMENTS D J, ZHU Y, et al. Enhancement of the solubility, stability and bioaccessibility of quercetin using protein-based excipient emulsions[J]. Food Research International,2018,114:30−37. doi: 10.1016/j.foodres.2018.07.062
    [47]
    LUO X, ZHOU Y, BAI L, et al. Fabrication of beta-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability[J]. Journal of Colloid and Interface Science,2017,490:328−335. doi: 10.1016/j.jcis.2016.11.057
    [48]
    苏佳琪, 何晓叶, 高彦祥, 等. 动态高压微射流制备β-乳球蛋白纳米乳液[J]. 中国酿造,2015,34(10):98−102. [SU J Q, HE X Y, GAO Y X, et al. Fabrication of β-lactoglobulin nanoemulsions by dynamic high-pressure microfluidization[J]. China Brewing,2015,34(10):98−102. doi: 10.11882/j.issn.0254-5071.2015.10.022

    SU J Q, HE X Y, GAO Y X, et al. Fabrication of β-lactoglobulin nanoemulsions by dynamic high-pressure microfluidization [J]. China Brewing, 2015, 34(10): 98-102. doi: 10.11882/j.issn.0254-5071.2015.10.022
    [49]
    CHEN X, ZOU L Q, LIU W, et al. Potential of excipient emulsions for improving quercetin bioaccessibility and antioxidant activity: An in vitro study[J]. Journal of Agricultural and Food Chemistry,2016,64(18):3653−3660. doi: 10.1021/acs.jafc.6b01056
    [50]
    CHEN X, MCCLEMENTS D J, ZHU Y, et al. Gastrointestinal fate of fluid and gelled nutraceutical emulsions: Impact on proteolysis, lipolysis, and quercetin bioaccessibility[J]. Journal of Agricultural and Food Chemistry,2018,66(34):9087−9096. doi: 10.1021/acs.jafc.8b03003
    [51]
    XU N, WU X L, ZHU Y Q, et al. Enhancing the oxidative stability of algal oil emulsions by adding sweet orange oil: Effect of essential oil concentration[J]. Food Chemistry,2021,355:129508. doi: 10.1016/j.foodchem.2021.129508
    [52]
    LEE L, NORTON I T. Comparing droplet breakup for a high-pressure valve homogeniser and a microfluidizer for the potential production of food-grade nanoemulsions[J]. Journal of Food Engineering,2013,114(2):158−163. doi: 10.1016/j.jfoodeng.2012.08.009
    [53]
    YANG Y, MARSHALL-BRETON C, LESER M E, et al. Fabrication of ultrafine edible emulsions: Comparison of high-energy and low-energy homogenization methods[J]. Food Hydrocolloids,2012,29(2):398−406. doi: 10.1016/j.foodhyd.2012.04.009
    [54]
    TANG S Y, SHRIDHARAN P, SIVAKUMAR M. Impact of process parameters in the generation of novel aspirin nanoemulsions-comparative studies between ultrasound cavitation and microfluidizer[J]. Ultrasonics-Sonochemistry,2013,20(1):485−497. doi: 10.1016/j.ultsonch.2012.04.005
    [55]
    BAI L, LV S, XIANG W, et al. Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability[J]. Food Hydrocolloids,2019,96:699−708. doi: 10.1016/j.foodhyd.2019.04.038
    [56]
    QIAN C, MCCLEMENTS D J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size[J]. Food Hydrocolloids,2011,25(5):1000−1008. doi: 10.1016/j.foodhyd.2010.09.017
    [57]
    SALVIA-TRUJILLO L, ROJAS-GRAü M A, SOLIVA-FORTUNY R, et al. Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions[J]. Food Hydrocolloids,2013,30(1):401−407. doi: 10.1016/j.foodhyd.2012.07.004
    [58]
    LI Y, MCCLEMENTS D J. New mathematical model for interpreting pH-stat digestion profiles: Impact of lipid droplet characteristics on in vitro digestibility[J]. Journal of Agricultural Food Chemistry,2010,58(13):8085−8092. doi: 10.1021/jf101325m
    [59]
    ZHANG R, ZHANG Z, ZOU L, et al. Enhancement of carotenoid bioaccessibility from carrots using excipient emulsions: Influence of particle size of digestible lipid droplets[J]. Food & Function,2016,7(1):93−103.
    [60]
    ZOU L, ZHENG B, LIU W, et al. Enhancing nutraceutical bioavailability using excipient emulsions: Influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin[J]. Journal of Functional Foods,2015,15:72−83. doi: 10.1016/j.jff.2015.02.044
    [61]
    TANG C-H, LIU F. Cold, gel-like soy protein emulsions by microfluidization: Emulsion characteristics, rheological and microstructural properties, and gelling mechanism[J]. Food Hydrocolloids,2013,30(1):61−72. doi: 10.1016/j.foodhyd.2012.05.008
    [62]
    MCCARTHY N A, KENNEDY D, HOGAN S A, et al. Emulsification properties of pea protein isolate using homogenization, microfluidization and ultrasonication[J]. Food Research International,2016,89(1):415−421.
    [63]
    LIU X, LIU Y-Y, GUO J, et al. Microfluidization initiated cross-linking of gliadin particles for structured algal oil emulsions[J]. Food Hydrocolloids,2017,73:153−161. doi: 10.1016/j.foodhyd.2017.07.001
    [64]
    LIU Y, ZHANG W, WANG K, et al. Fabrication of gel-like emulsions with whey protein isolate using microfluidization: Rheological properties and 3D printing performance [J]. Food and Bioprocess Technology, 2019,
    [65]
    TRUJILLO C C, WRIGHT A J. Properties and stability of solid lipid particle dispersions based on canola stearin and poloxamer 188[J]. Journal of the American Oil Chemists’ Society,2010,87(7):715−730. doi: 10.1007/s11746-010-1553-6
    [66]
    HELGASON T, SALMINEN H, KRISTBERGSSON K, et al. Formation of transparent solid lipid nanoparticles by microfluidization: Influence of lipid physical state on appearance[J]. Journal of Colloid and Interface Science,2015,448:114−122. doi: 10.1016/j.jcis.2015.02.010
    [67]
    HELGASON T, AWAD T S, KRISTBERGSSON K, et al. Impact of surfactant properties on oxidative stability of beta-carotene encapsulated within solid lipid nanoparticles[J]. Journal of Agricultural and Food Chemistry,2009,57(17):8033−8040. doi: 10.1021/jf901682m
    [68]
    NIK A M, LANGMAID S, WRIGHT A J. Nonionic surfactant and interfacial structure impact crystallinity and stability of beta-carotene loaded lipid nanodispersions[J]. Journal of Agricultural and Food Chemistry,2012,60(16):4126−4135. doi: 10.1021/jf204810m
    [69]
    CHEN J, WEI N, LOPEZ-GARCIA M, et al. Development and evaluation of resveratrol, vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications[J]. European Journal of Pharmaceutics and Biopharmaceutics,2017,117:286−291. doi: 10.1016/j.ejpb.2017.04.008
    [70]
    JAFARI S M, HE Y, BHANDARI B. Role of powder particle size on the encapsulation efficiency of oils during spray drying[J]. Drying Technology,2007,25(6):1081−1089. doi: 10.1080/07373930701397343
    [71]
    CHEN J, LI F, LI Z, et al. Encapsulation of carotenoids in emulsion-based delivery systems: Enhancement of β-carotene water-dispersibility and chemical stability[J]. Food Hydrocolloids,2017,69:49−55. doi: 10.1016/j.foodhyd.2017.01.024
    [72]
    PEREYRA-CASTRO S C, ALAMILLA-BELTRáN L, VILLALOBOS-CASTILLEJOS F, et al. Microfluidization and atomization pressure during microencapsulation process: Microstructure, hygroscopicity, dissolution and flow properties[J]. LWT-Food Science and Technology,2018,96:378−385. doi: 10.1016/j.lwt.2018.05.042
    [73]
    LIU W, WANG J, MCCLEMENTS D J, et al. Encapsulation of β-carotene-loaded oil droplets in caseinate/alginate microparticles: Enhancement of carotenoid stability and bioaccessibility[J]. Journal of Functional Foods,2018,40:527−535. doi: 10.1016/j.jff.2017.11.046
    [74]
    MA D, TU Z C, WANG H, et al. Microgel-in-microgel biopolymer delivery systems: Controlled digestion of encapsulated lipid droplets under simulated gastrointestinal conditions[J]. Journal of Agricultural and Food Chemistry,2018,66(15):3930−3938. doi: 10.1021/acs.jafc.8b00132
    [75]
    ZHANG Z, JUNG K J, ZHANG R, et al. In situ monitoring of lipid droplet release from biopolymer microgels under simulated gastric conditions using magnetic resonance imaging and spectroscopy[J]. Food Research International,2019,123:181−188. doi: 10.1016/j.foodres.2019.04.063
    [76]
    IMRAN M, REVOL-JUNELLES A-M, PARIS C, et al. Liposomal nanodelivery systems using soy and marine lecithin to encapsulate food biopreservative nisin[J]. LWT-Food Science and Technology,2015,62(1):341−349. doi: 10.1016/j.lwt.2014.12.046
  • Related Articles

    [1]ZAN Lifeng, YANG Xiangyu, ZHANG Lei, XIN Juncai, GUO Haiyan, LI Hairong. Systematic Analysis of Anti-inflammatory Active Components in Diospyros lotus Fruit Using UPLC-Q-TOF/MS Combined with Network Pharmacology[J]. Science and Technology of Food Industry, 2024, 45(21): 264-274. DOI: 10.13386/j.issn1002-0306.2023120025
    [2]NIE Liyuan, FAN Sanhong, CAO Linxu, QIN Xuemei, LI Zhenyu. Small Molecule Peptide and the Potential Mechanism of Shanxi Vinegar Based on UPLC-Q-TOF-MS Technology and Network Pharmacology[J]. Science and Technology of Food Industry, 2024, 45(18): 31-41. DOI: 10.13386/j.issn1002-0306.2023100274
    [3]CAI Guoqiang, XU Zhijie, QIAO Xiaohong, LUO Tianji, ZHANG Lei, HE Yibo. Establishment of UPLC-Q-TOF-MS Fingerprints and Antioxidant Spectroscopic Relationship of Ethanol-eluting Sites of Tetrastigma hemsleyanum Macroporous Resin[J]. Science and Technology of Food Industry, 2024, 45(15): 313-321. DOI: 10.13386/j.issn1002-0306.2023080305
    [4]Boji MA, Yan XIAO, Zude CHEN, Rengeng SHU, Bingtao LI, Li JIANG, Guoliang XU, Qiyun ZHANG. Analysis of Chemical Constituents in Percolate the Extract of Cyclocarya paliurus Tender Leaves by UHPLC-Q-TOF-MS/MS[J]. Science and Technology of Food Industry, 2023, 44(13): 281-291. DOI: 10.13386/j.issn1002-0306.2022070294
    [5]AN Li, WANG Hong, MA Jingwei, YUAN Yongliang, ZHAI Nannan, ZHENG Lufei, WU Xujin. Medicinal and Nutritional Value of the Chemical Compositions of Dioscorea opposita Thunb. cv. Tiegun Peel Based on UPLC-Q/TOF-MS/MS and Bioinformatics[J]. Science and Technology of Food Industry, 2023, 44(2): 1-9. DOI: 10.13386/j.issn1002-0306.2021100320
    [6]ZAN Lifeng, YANG Xiangyu, GUO Haiyan, WANG Yadong, YE Jia. Characterization of Chemical Constituents from Fruits of Rosa xanthina by UPLC-Q-TOF-MS[J]. Science and Technology of Food Industry, 2021, 42(23): 251-258. DOI: 10.13386/j.issn1002-0306.2021020115
    [7]LI Lu, FU Wangwei, WU Ruiting, WU Wenying, YIN Shuhua, SONG Yehao, WAN Min, LI Wenjuan. Effect of Ganoderma lucidum Polysaccharides on Intestinal Inflammation in Rats Based on UPLC-Q-TOF/MS[J]. Science and Technology of Food Industry, 2021, 42(6): 310-317. DOI: 10.13386/j.issn1002-0306.2020050103
    [8]WANG Yue-nan, MI Zhi-hui, LI Chang-kun, PAN Lin, SUN Zhi-hong, SUN Tian-song. Metabolites Profile Analysis of Fermented Milk with Lactobacillus plantarum P-8 Based on Ultra-performance Liquid Chromatography-quadrupole-time of Flight Mass Spectrometry(UPLC-Q-TOF-MS)[J]. Science and Technology of Food Industry, 2019, 40(11): 152-160. DOI: 10.13386/j.issn1002-0306.2019.11.026
    [9]LIANG Na, SANG Ya-xin, ZHOU Yan, LIU Wei-hua, LI Tian-ye, WANG Xiang-hong. Analysis of gingerol compounds in rhizoma zingiberis by HPLC-ESI-Q-TOF-MS/MS[J]. Science and Technology of Food Industry, 2018, 39(9): 252-256. DOI: 10.13386/j.issn1002-0306.2018.09.044
    [10]CHEN Sheng, JIN Yan, LIU Lv-ye. Determination of 2-aminoacetophenone in syrup by online SPE HPLC-MS/MS[J]. Science and Technology of Food Industry, 2014, (04): 76-78. DOI: 10.13386/j.issn1002-0306.2014.04.026
  • Cited by

    Periodical cited type(8)

    1. 吴淼源,廖卢艳,任贤龙,刘操,吴卫国. 粒度和磨粉工艺对大米粉及其鲜湿米粉品质的影响. 粮食与油脂. 2025(04): 13-20 .
    2. 朴升虎,袁洁瑶,徐丽,刘艳兰,易翠平. 5种杂豆粉的理化性质及凝胶特性. 食品与机械. 2024(05): 168-172 .
    3. 曹怡君,冯伟,王韧,张昊,王涛. 差异化蛋白脱除对早籼米粉性质的影响. 食品与机械. 2024(08): 16-22+39 .
    4. 郭兵兵,陈思贤,黄哲宇,魏丫然,刘翰林,艾有伟. 葛根风味蛋糕的制备及其品质特性与风味研究. 食品安全质量检测学报. 2024(19): 293-305 .
    5. 陈凤莲,郭银梅,李欣洋,贺殷媛,刘琳琳,吉语宁,窦新梾,安然,张娜. 米粉品种和粒度对蛋糕糊力学特性及成品品质的影响. 中国食品学报. 2023(04): 262-273 .
    6. 宋喜雅,林江涛,岳清华,宋安琪,王瑞. 入磨水分对米粉粉质特性的影响研究. 河南工业大学学报(自然科学版). 2023(04): 35-42 .
    7. 于书蕾,姜鹏飞,王丹,祁立波,尚珊. 糯米粉对海绵蛋糕烘焙品质及老化特性的影响. 食品与机械. 2023(12): 29-37 .
    8. 葛蕊,钱晓洁,孙冰华,王晓曦. 粒度对玉米粉及玉米面条影响的研究进展. 中国粮油学报. 2023(12): 251-258 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (417) PDF downloads (32) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return