Citation: | MENG Yingping, FENG Jie, WEI Hua, et al. Research Progress in the Regulation of Gut Microbiota on Diet-Induced Hyperuricemia[J]. Science and Technology of Food Industry, 2022, 43(18): 465−473. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090006. |
[1] |
JUNG S W, KIM S M, KIM Y G, et al. Uric acid and inflammation in kidney disease[J]. American Journal of Physiology,2020,318(302):1327−1340.
|
[2] |
TAI L, LIU Z, SUN M, et al. Anti-hyperuricemic effects of three the aflavins isolated from black tea in hyperuricemic mice[J]. Journal of Functional Foods,2020,66:103803. doi: 10.1016/j.jff.2020.103803
|
[3] |
HISATOME I, LI P, MIAKE J, et al. Uric acid as a risk factor for chronic kidney disease and cardiovascular disease-Japanese guideline on the management of asymptomatic hyperuricemia[J]. Circulation Journal,2020,85(2):130−138.
|
[4] |
CHEN-XU M, YOKOSE C, RAI S K, et al. Contemporary prevalence of gout and hyperuricemia in the united states and decadal trends: The national health and nutrition examination survey, 2007-2016[J]. Arthritis & Rheumatology,2019,71(6):991−999.
|
[5] |
LIU R, HAN C, WU D, et al. Prevalence of hyperuricemia and gout in mainland China from 2000 to 2014: A systematic review and meta-analysis[J]. BioMed Research International,2015:1−12.
|
[6] |
BORGHI C, AGABITI-ROSEI E, JOHNSON R J, et al. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease[J]. European Journal of Internal Medicine,2020,80:1−11. doi: 10.1016/j.ejim.2020.07.006
|
[7] |
YAN D, WANG J, JIANG F, et al. A causal relationship between uric acid and diabetic macrovascular disease in Chinese type 2 diabetes patients: A mendelian randomization analysis[J]. International Journal of Cardiology,2016,214:194−199. doi: 10.1016/j.ijcard.2016.03.206
|
[8] |
MACKENZIE I S, FORD I, NUKI G, et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): A multicentre, prospective, randomised, open-label, non-inferiority trial[J]. The Lancet,2020,396(10264):1745−1757. doi: 10.1016/S0140-6736(20)32234-0
|
[9] |
侯艳培, 张彩霞, 李冰. 降尿酸药物的最新研究进展[J]. 中国中西医结合肾病杂志,2019,20(2):87−89. [HOU Y P, ZHANG C X, LI B. The latest research progress of uric acid lowering drugs[J]. Chinese Journal of Integrated Traditional and Western Nephrology,2019,20(2):87−89. doi: 10.3969/j.issn.1009-587X.2019.02.033
HOU Y P, ZHANG C X, LI B. The latest research progress of uric acid lowering drugs[J]. Chinese Journal of Integrated Traditional and Western Nephrology, 2019, 20(2): 87-89. doi: 10.3969/j.issn.1009-587X.2019.02.033
|
[10] |
LV Q, XU D, ZHANG X, et al. Association of hyperuricemia with immune disorders and intestinal barrier dysfunction[J]. Frontiers in Physiology,2020,11:524236. doi: 10.3389/fphys.2020.524236
|
[11] |
SHAN R, NING Y, MA Y, et al. Incidence and risk factors of hyperuricemia among 2.5 million chinese adults during the years 2017-2018[J]. International Journal of Environmental Research Public Health,2021,18(5):2360. doi: 10.3390/ijerph18052360
|
[12] |
ESCHE J, KRUPP D, MENSINK G B, et al. Estimates of renal net acid excretion and their relationships with serum uric acid and hyperuricemia in a representative German population sample [J]. Eur J Clin Nutr, 2020, 74(Suppl 1): 63-68.
|
[13] |
LU J, DALBETH N, YIN H, et al. Mouse models for human hyperuricaemia: A critical review[J]. Nat Rev Rheumatol,2019,15(7):413−426. doi: 10.1038/s41584-019-0222-x
|
[14] |
AUBERSON M, STADELMANN S, STOUDMANN C, et al. SLC2A9 (GLUT9) mediates urate reabsorption in the mouse kidney[J]. Pflügers Archiv-European Journal of Physiology,2018,470(12):1739−1751.
|
[15] |
张炳森, 赵泽安, 李咏梅, 等. 橄榄果汁冻干粉的降尿酸与抗痛风作用[J]. 食品工业科技,2021,42(24):347−353. [ZHANG B S, ZHAO Z A, LI Y M, et al. Anti-hyperuricemic and anti-gout effects of olive juice freeze dried powder in rats[J]. Science and Technology of Food Industry,2021,42(24):347−353. doi: 10.13386/j.issn1002-0306.2021030330
ZHANG B S, ZHAO Z A, LI Y M, et al. Anti-hyperuricemic and anti-gout effects of olive juice freeze dried powder in rats[J]. Science and Technology of Food Industry, 2021, 42(24): 347-353. DOI: 10.13386/j.issn1002-0306.2021030330.
|
[16] |
MAJOR T J, TOPLESS R K, DALBETH N, et al. Evaluation of the diet wide contribution to serum urate levels: Meta-analysis of population based cohorts[J]. BMJ,2018,363:k3951.
|
[17] |
骆贤亮, 刘滔, 钱忠英, 等. 降尿酸肽对高尿酸血症的作用及研究进展[J]. 食品科学, 2020, 42(5): 340−348.
LUO X L, LIU T, QIAN Z Y, et al. Recent progress in research on hyperuricemia and uric acid-lowering peptides[J]. Food Science, 2020, 42(5): 340−348.
|
[18] |
YERLIKAYA A, DAGEL T, KING C, et al. Dietary and commercialized fructose: Sweet or sour?[J]. International Urology & Nephrology,2017,49(9):1611−1620.
|
[19] |
CAO T, LI X, MAO T. Probiotic therapy alleviates hyperuricemia in C57BL/6 mouse model[J]. Biomed Res,2017,28(5):2244−2249.
|
[20] |
MASSY Z A, DRUEKE T B. Diet-microbiota interaction and kidney disease progression[J]. Kidney International,2021,99(4):797−800. doi: 10.1016/j.kint.2020.11.006
|
[21] |
ZMORA N, SUEZ J, ELINAV E. You are what you eat: Diet, health and the gut microbiota[J]. Nature Reviews Gastroenterology & Hepatology,2019,16(1):35−56.
|
[22] |
NAKAGAWA T, LANASPA M A, JOHNSON R J. The effects of fruit consumption in patients with hyperuricaemia or gout[J]. Rheumatology (Oxford),2019,58(7):1133−1141. doi: 10.1093/rheumatology/kez128
|
[23] |
VEDDER D, WALRABENSTEIN W, HESLINGA M, et al. Dietary interventions for gout and effect on cardiovascular risk factors: A systematic review[J]. Nutrients,2019,11(12):2955. doi: 10.3390/nu11122955
|
[24] |
白佳佳, 夏阳, 吴琪俊, 等. 富含嘌呤食物与高尿酸血症关系研究进展[J]. 中国公共卫生,2017,35(1111):636−638. [BAI J J, XIA Y, WU Q J, et al. Association of purin-rich food with hyperuricemia: Research progress[J]. Chin J Public Health,2017,35(1111):636−638.
BAI J J, XIA Y, WU Q J, et al. Association of purin-rich food with hyperuricemia: research progress[J]. Chin J Public Health, 2017, 35(1111): 636-638.
|
[25] |
蔡路昀, 冷利萍, 曹爱玲, 等. 食品中嘌呤含量分布研究进展[J]. 食品科学技术学报, 2018, 36(5): 78-85.
CAI L Y, LENG L P, CAO A L, et al. Research progress of purine content distribution in food[J]. Journal of Food Science and Technology, 2018, 36(5): 74-81.
|
[26] |
JAMNIK J, REHMAN S, BLANCO M S, et al. Fructose intake and risk of gout and hyperuricemia: A systematic review and meta-analysis of prospective cohort studies[J]. BMJ Open,2016,6(10):e013191. doi: 10.1136/bmjopen-2016-013191
|
[27] |
WANG Z, BERGERON N, LEVISON B S, et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women[J]. Eur Heart J,2019,40(7):583−594. doi: 10.1093/eurheartj/ehy799
|
[28] |
仲召鹏, 胡小松, 郑浩, 等. 膳食脂肪、肠道微生物与宿主健康的研究进展[J]. 生物工程学报,2021,37(11):1−17. [ZHONG Z P, HU X S, ZHENG H, et al. Crosstalk between dietary fat, the gut microbiome, and metabolic health[J]. Chinese Journal of Biotechnology,2021,37(11):1−17. doi: 10.13345/j.cjb.210442
ZHONG Z P, HU X S, ZHENG H, et al. Crosstalk between dietary fat, the gut microbiome, and metabolic health[J]. Chinese Journal of Biotechnology, 2021, 37(11): 1-17. doi: 10.13345/j.cjb.210442
|
[29] |
TASKINEN M R, PACKARD C J, BOREN J. Dietary fructose and the metabolic syndrome[J]. Nutrients,2019,11(9):1987. doi: 10.3390/nu11091987
|
[30] |
张晶, 李昊, 师建辉, 等. 果糖与代谢性疾病[J]. 中国病理生理杂志,2020,36(4):163−168. [ZHANG J, LI H, SHI J H, et al. Fructose and metabolic diseases[J]. Chinese Journal of Pathophysiology,2020,36(4):163−168. doi: 10.3969/j.issn.1000-4718.2020.04.022
ZHANG J, LI H, SHI J H, et al. Fructose and metabolic diseases[J]. Chinese Journal of Pathophysiology, 2020, 36(04): 163-168. doi: 10.3969/j.issn.1000-4718.2020.04.022
|
[31] |
ZHANG C W, LI L J, ZHANG Y P, et al. Recent advances in fructose intake and risk of hyperuricemia[J]. Biomedicine & Pharmacotherapy,2020,131:110795.
|
[32] |
EBRAHIMPOUR-KOUJAN S, SANEEI P, LARIJANI B, et al. Consumption of sugar sweetened beverages and dietary fructose in relation to risk of gout and hyperuricemia: A systematic review and meta-analysis[J]. Critical Reviews in Food Science and Nutrition,2020,60(1):1−10. doi: 10.1080/10408398.2018.1503155
|
[33] |
ZHANG T, BIAN S, GU Y, et al. Sugar-containing carbonated beverages consumption is associated with hyperuricemia in general adults: A cross-sectional study[J]. Nutrition Metabolism and Cardiovascular Diseases,2020,30(10):1645−1652. doi: 10.1016/j.numecd.2020.05.022
|
[34] |
DO M H, LEE E, OH M J, et al. High-glucose or -fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change[J]. Nutrients,2018,10(6):761. doi: 10.3390/nu10060761
|
[35] |
SILVA J C P, MOTA M, MARTINS F O, et al. Intestinal microbial and metabolic profiling of mice fed with high-glucose and high-fructose diets[J]. Journal of Proteome Research,2018,17(8):2880−2891. doi: 10.1021/acs.jproteome.8b00354
|
[36] |
SUN S Z, FLICKINGER B D, WILLIAMSON-HUGHES P S, et al. Lack of association between dietary fructose and hyperuricemia risk in adults[J]. Nutrition & Metabolism,2010,7(1):16.
|
[37] |
YU Z, LOWNDES J, RIPPE J. High-fructose corn syrup and sucrose have equivalent effects on energy-regulating hormones at normal human consumption levels[J]. Nutr Res,2013,33(12):1043−1052. doi: 10.1016/j.nutres.2013.07.020
|
[38] |
AIHEMAITIJIANG S, ZHANG Y, ZHANG L, et al. The sssociation between purine-rich food intake and hyperuricemia: A cross-sectional study in chinese adult residents[J]. Nutrients,2020,12(12):3835. doi: 10.3390/nu12123835
|
[39] |
黄胜男, 林志健, 张冰, 等. 肠道菌群结构变化与高尿酸血症发生的关系[J]. 北京中医药大学学报,2015,38(7):425−456. [HUANG S N, LIN Z J, ZHANG B, et al. Correlation between structural shifts of gut microbiota and hyperuricemia in quails[J]. Journal of Beijing University of Traditional Chinese Medicine,2015,38(7):425−456. doi: 10.3969/j.issn.1006-2157.2015.07.006
HUANG S N, LIN Z J, ZHANG B, et al. Correlation between structural shifts of gut microbiota and hyperuricemia in quails[J]. Journal of Beijing University of Traditional Chinese Medicine, 2015, 38(7): 425-456. doi: 10.3969/j.issn.1006-2157.2015.07.006
|
[40] |
LIU X, LV Q, REN H, et al. The altered gut microbiota of high-purine-induced hyperuricemia rats and its correlation with hyperuricemia[J]. PeerJ,2020,8(3):e8664.
|
[41] |
YU Y, LIU Q, LI H, et al. Alterations of the gut microbiome associated with the treatment of hyperuricaemia in male rats[J]. Frontiers in Microbiology,2018(9):2233.
|
[42] |
GUO Z, ZHANG J, WANG Z, et al. Intestinal microbiota distinguish gout patients from healthy humans[J]. Scientific Reports,2016(6):20602.
|
[43] |
HSU C L, HOU Y H, WANG C S, et al. Antiobesity and uric acid-lowering effect of Lactobacillus plantarum GKM3 in high-fat-diet-induced obese rats[J]. Journal of the American College of Nutrition,2019,38(7):623−632. doi: 10.1080/07315724.2019.1571454
|
[44] |
SUN Y, GE X, LI X, et al. High-fat diet promotes renal injury by inducing oxidative stress and mitochondrial dysfunction[J]. Cell Death & Disease,2020,11(10):914.
|
[45] |
TORRES-FUENTES C, SCHELLEKENS H, DINAN T G, et al. The microbiota–gut–brain axis in obesity[J]. The Lancet Gastroenterology & Hepatology,2017,2(10):747−756.
|
[46] |
YUN Y, YIN H, GAO Z, et al. Intestinal tract is an important organ for lowering serum uric acid in rats[J]. PLoS One,2017,12(12):e0190194. doi: 10.1371/journal.pone.0190194
|
[47] |
XU D, LV Q, WANG X, et al. Hyperuricemia is associated with impaired intestinal permeability in mice[J]. AJP Gastrointestinal and Liver Physiology,2019,317(4):484−492. doi: 10.1152/ajpgi.00151.2019
|
[48] |
SHAO T, SHAO L, LI H, et al. Combined signature of the fecal microbiome and metabolome in patients with gout[J]. Frontiers in Microbiology,2017,8:268.
|
[49] |
ARMOUR C, NAYFACH S, POLLARD K, et al. A metagenomic meta-analysis reveals functional signatures of health and disease in the human gut microbiome[J]. mSystems,2019,4(4):e00332.
|
[50] |
XING S C, MENG D M, CHEN Y, et al. Study on the diversity of bacteroides and clostridium in patients with primary gout[J]. Cell Biochemistry and Biophysics,2015,71(2):707−715. doi: 10.1007/s12013-014-0253-5
|
[51] |
黄胜男, 林志健, 张冰, 等. 高尿酸血症鹌鹑肠道菌群结构分析[J]. 中国实验动物学报,2020,28(1):17−22. [HUANG S N, LIN Z J, ZHANG B, et al. Analysis of the gut microbiota structure in quails with hyperuricemia[J]. Acta Labortorium Animalis Scientia Sinica,2020,28(1):17−22. doi: 10.3969/j.issn.1005-4847.2020.01.003
HUANG S N, LIN Z J, ZHANG B, et al. Analysis of the gut microbiota structure in quails with hyperuricemia[J]. Acta Labortorium Animalis Scientia Sinica, 2020, 28(1): 17-22. doi: 10.3969/j.issn.1005-4847.2020.01.003
|
[52] |
EL RIDI R, TALLIMA H. Physiological functions and pathogenic potential of uric acid: A review[J]. Journal of Advanced Research,2017,8(5):487−493. doi: 10.1016/j.jare.2017.03.003
|
[53] |
YAMADA N, IWAMOTO C, KANO H, et al. Evaluation of purine utilization by Lactobacillus gasseri strains with potential to decrease the absorption of food-derived purines in the human intestine[J]. Nucleosides Nucleotides Nucleic Acids,2016,35(10−12):670−676. doi: 10.1080/15257770.2015.1125000
|
[54] |
BUZARD J, BISHOP C, TALBOTT J H. Recovery in humans of intravenously injected isotopic uric acid[J]. Journal of Biological Chemistry,1952,196(1):179. doi: 10.1016/S0021-9258(18)55717-3
|
[55] |
HARTWICH K, POEHLEIN A, DANIEL R. The purine-utilizing bacterium Clostridium acidurici 9a: A genome-guided metabolic reconsideration[J]. PLoS One,2012,7(12):e51662. doi: 10.1371/journal.pone.0051662
|
[56] |
SORENSEN L B. Role of the intestinal tract in the elimination of uric acid[J]. Arthritis and Rheumatism,1965,8(5):694−706.
|
[57] |
HSIEH C Y, LIN H J, CHEN C H, et al. Chronic kidney disease and stroke[J]. The Lancet Neurology,2014,13(11):1071.
|
[58] |
CRANE J K. Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli[J]. Gut Microbes,2013,4(5):388−391. doi: 10.4161/gmic.25584
|
[59] |
YASIRI A, SEUBSASANA S. Isolation of bile salt hydrolase and uricase producing Lactobacillus brevis SF121 from pak sian dong (Fermented Spider Plant) for using as probiotics[J]. Journal of Pure and Applied Microbiology,2020,14(3):1715−1722. doi: 10.22207/JPAM.14.3.10
|
[60] |
王雨, 林志健, 边猛, 等. 维药菊苣提取物对高尿酸血症状态下肠道屏障的影响[J]. 中华中医药杂志,2018,33(5):42−47. [WANG Y, LIN Z J, BIAN M, et al. Effects on intervention of intestinal barrier with uyghur medicine Cichorium intybus Linn in hyperuricemia[J]. China Journal of Traditional Chinese Medicine and Pharmacy,2018,33(5):42−47.
WANG Y, LIN Z J, BIAN M, et al. Effects on intervention of intestinal barrier with uyghur medicine Cichorium intybus Linn in hyperuricemia[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2018, 33(05): 42-47.
|
[61] |
GUO Y, YU Y, LI H, et al. Inulin supplementation ameliorates hyperuricemia and modulates gut microbiota in Uox-knockout mice[J]. European Journal of Nutrition,2020,60(4):1−14.
|
[62] |
邹 琳, 冯凤琴. 食品中降尿酸活性物质及其作用机理研究进展[J]. 食品工业科技,2019,40(13):352−357. [ZOU L, FENG F Q. Research progress of uric acid-lowering bioactive compounds in food and their mechanisms[J]. Science and Technology of Food Industry,2019,40(13):352−357. doi: 10.13386/j.issn1002-0306.2019.13.059
ZOU L, FENG F Q. Research progress of uric acid-lowering bioactive compounds in food and their mechanisms[J]. Science and Technology of Food Industry, 2019, 40(13): 352-357. doi: 10.13386/j.issn1002-0306.2019.13.059
|
[63] |
MORIMOTO C, TAMURA Y, ASAKAWA S, et al. ABCG2 expression and uric acid metabolism of the intestine in hyperuricemia model rat[J]. Nucleosides Nucleotides Nucleic Acids,2020,39(5):744−759. doi: 10.1080/15257770.2019.1694684
|
[64] |
PAN L, HAN P, MA S, et al. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia[J]. Acta Pharmaceutica Sinica B,2020,10(2):249−261. doi: 10.1016/j.apsb.2019.10.007
|
[65] |
MATSUO H, TSUNODA T, OOYAMA K, et al. Hyperuricemia in acute gastroenteritis is caused by decreased urate excretion via ABCG2[J]. Scientific Reports,2016,6:31003. doi: 10.1038/srep31003
|
[66] |
NIGAM S K, BHATNAGAR V. The systems biology of uric acid transporters: The role of remote sensing and signaling[J]. Current Opinion in Nephrology and Hypertension,2018,27(4):305−313. doi: 10.1097/MNH.0000000000000427
|
[67] |
KOH A, DE VADDER F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites[J]. Cell,2016,165(6):1332−1345. doi: 10.1016/j.cell.2016.05.041
|
[68] |
朱广素, 王刚, 王园园, 等. 植物乳杆菌通过调节肠道短链脂肪酸水平缓解代谢综合征[J]. 食品科学,2019,40(13):102−109. [ZHU G S, WANG G, WANG Y Y, et al. Lactobacillus plantarum alleviates metabolic syndrome by modulating intestinal short-chain fatty acid levels[J]. Food Science,2019,40(13):102−109. doi: 10.7506/spkx1002-6630-20180301-004
ZHU G S, WANG G, WANG Y Y. Lactobacillus plantarum alleviates metabolic syndrome by modulating intestinal short-chain fatty acid levels[J]. Food science, 2019, 40(13): 102-109. doi: 10.7506/spkx1002-6630-20180301-004
|
[69] |
ROSSER E C, PIPER C J M, MATEI D E, et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells[J]. Cell Metabolism,2020,31(4):837−851. doi: 10.1016/j.cmet.2020.03.003
|
[70] |
TERKELTAUB R. What makes gouty inflammation so variable?[J]. Bmc Medicine, 2017, 15(1): 158.
|
[71] |
CLEOPHAS M C, CRISAN T O, JOOSTEN L A. Factors modulating the inflammatory response in acute gouty arthritis[J]. Curr Opin Rheumatol,2017,29(2):163−170.
|
[72] |
VIEIRA A T, GALVAO I, MACIA L M, et al. Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice[J]. J Leukoc Biol,2017,101(1):275−284. doi: 10.1189/jlb.3A1015-453RRR
|
[73] |
YAO Y, CAI X, FEI W, et al. The role of short-chain fatty acids in immunity, inflammation and metabolism[J]. Critical Reviews in Food Science and Nutrition,2020:1−12.
|
[74] |
GARCIA-ARROYO F E, GONZAGA G, MUNOZ-JIMENEZ I, et al. Probiotic supplements prevented oxonic acid-induced hyperuricemia and renal damage[J]. PLoS One,2018,13(8):e0202901. doi: 10.1371/journal.pone.0202901
|
[75] |
王力. 酪酸梭菌对高尿酸血症大鼠血尿酸及炎性因子水平的影响[J]. 南方医科大学学报,2017,37(5):678−682. [WANG L. Effects of Clostridium butyricum on serum uric acid and inflammatory mediators in rats with hyperuricemia[J]. Journal of Southern Medical University,2017,37(5):678−682. doi: 10.3969/j.issn.1673-4254.2017.05.19
WANG L. Effects of Clostridium butyricum on serum uric acid and inflammatory mediators in rats with hyperuricemia[J]. Journal of Southern Medical University, 2017, 37(5): 678-682. doi: 10.3969/j.issn.1673-4254.2017.05.19
|
[76] |
WU Y, YE Z, FENG P, et al. Limosilactobacillus fermentum JL-3 isolated from “Jiangshui” ameliorates hyperuricemia by degrading uric acid[J]. Gut Microbes,2021,13(1):1−18.
|
[77] |
张晓晖, 关海滨, 冬颖, 等. 植物乳杆菌ZXH-1304S降解肌酐和尿酸的活力研究[J]. 食品工业科技,2019,40(11):174−177. [ZHANG X H, GUAN H B, DONG Y, et al. Degrading activity of creatinine and uric acid of Lactobacillus plantarum ZXH-1304S[J]. Science and Technology of Food Industry,2019,40(11):174−177. doi: 10.13386/j.issn1002-0306.2019.11.029
ZHANG X H, GUAN H B, DONG Y, et al. Degrading activity of creatinine and uric acid of Lactobacillus plantarum ZXH-1304S[J]. Science and Technology of Food Industry, 2019, 40(11): 174-177. doi: 10.13386/j.issn1002-0306.2019.11.029
|
[78] |
WANG H, MEI L, DENG Y, et al. Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis[J]. Nutrition,2019,62:63−73. doi: 10.1016/j.nut.2018.11.018
|
[79] |
NI C, LI X, WANG L, et al. Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism[J]. Food Funct,2021,12(15):7054−7067. doi: 10.1039/D1FO00198A
|
[80] |
HAN J, WANG X, TANG S, et al. Protective effects of tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation mediated by gut microbiota[J]. The FASEB Journal,2020,34(4):5061−5076. doi: 10.1096/fj.201902597RR
|
[81] |
ZHANG R, GAO S J, ZHU C Y, et al. Characterization of a novel alkaline Arxula adeninivorans urate oxidase expressed in Escherichia coli and its application in reducing uric acid content of food[J]. Food Chemistry,2019,293:254−262. doi: 10.1016/j.foodchem.2019.04.112
|
[82] |
HANDAYANI, UTAMI, HIDAYAT, et al. Screening of lactic acid bacteria producing uricase and stability assessment in simulated gastrointestinal conditions[J]. International Food Research Journal,2018,25(4):1661−1667.
|
1. |
李杰,李霜,张鹏霞,祝丽玲,周健,孙雪微,宋丽新. 发酵食品中具有潜在降尿酸功能乳酸菌的筛选及特性分析. 食品研究与开发. 2024(07): 174-180 .
![]() | |
2. |
于鑫迪,刘静雅,任秀梅,陈炼红. 功能性牦牛酸奶制备、贮藏期内品质及降嘌呤活性研究. 食品工业科技. 2024(21): 20-29 .
![]() | |
3. |
莫星忧,欧仕益,毋福海,吴帅,吴慧,李倩. 膳食对高尿酸血症的影响及控制研究进展. 农产品加工. 2024(22): 100-104 .
![]() | |
4. |
陈天琦,屈墨涵,张春红,李丹,尹雪斌. 食药同源对防治慢性代谢性疾病的作用及功能农业解决方案. 肥料与健康. 2024(06): 86-90 .
![]() | |
5. |
付喜华,韩四海,刘建学,李佩艳,郭金英,罗登林,岳崇慧. 葡萄蒸馏酒对高尿酸血症模型小鼠肠道菌群的调节作用. 食品科学. 2023(07): 161-168 .
![]() | |
6. |
陈聪聪,周全. 基于网络药理学与分子对接探讨四妙丸“异病同治”强直性脊柱炎和高尿酸血症的作用机制. 河南中医. 2023(10): 1534-1542 .
![]() |