MENG Yingping, FENG Jie, WEI Hua, et al. Research Progress in the Regulation of Gut Microbiota on Diet-Induced Hyperuricemia[J]. Science and Technology of Food Industry, 2022, 43(18): 465−473. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090006.
Citation: MENG Yingping, FENG Jie, WEI Hua, et al. Research Progress in the Regulation of Gut Microbiota on Diet-Induced Hyperuricemia[J]. Science and Technology of Food Industry, 2022, 43(18): 465−473. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090006.

Research Progress in the Regulation of Gut Microbiota on Diet-Induced Hyperuricemia

More Information
  • Received Date: September 01, 2021
  • Available Online: July 06, 2022
  • Hyperuricemia is a metabolic disease with excessively high level of uric acid in blood. It is triggered by the disorder of purine metabolism and/or uric acid excretion in human, and the purine-rich and fructose-rich diets and purine was confirmed to induce the hyperuricemia. In recent years, some reports have shown that there is a close connection between hyperuricemia and gut microbiota, namely the patients with hyperuricemia have a gut microbiota disorder and decreased abundance of beneficial bacteria. Rational diet and probiotics intake have been confirmed to regulate intestinal microbiota effectively, maintain homeostasis, and promote intestinal purine and uric acid metabolism. Thus, gut microbiota is considered as a target for future preventation of hyperuricemia. In the review, the feature and pathogenesis of hyperuricemia, the induction of diet on hyperuricemia, the association between hyperuricemia and gut microbiota, and the regulation strategies of gut microbiota on hyperuricemia are summarized. This review would provide reference for the diagnosis and treatment of hyperuricemia and gout in the future.
  • [1]
    JUNG S W, KIM S M, KIM Y G, et al. Uric acid and inflammation in kidney disease[J]. American Journal of Physiology,2020,318(302):1327−1340.
    [2]
    TAI L, LIU Z, SUN M, et al. Anti-hyperuricemic effects of three the aflavins isolated from black tea in hyperuricemic mice[J]. Journal of Functional Foods,2020,66:103803. doi: 10.1016/j.jff.2020.103803
    [3]
    HISATOME I, LI P, MIAKE J, et al. Uric acid as a risk factor for chronic kidney disease and cardiovascular disease-Japanese guideline on the management of asymptomatic hyperuricemia[J]. Circulation Journal,2020,85(2):130−138.
    [4]
    CHEN-XU M, YOKOSE C, RAI S K, et al. Contemporary prevalence of gout and hyperuricemia in the united states and decadal trends: The national health and nutrition examination survey, 2007-2016[J]. Arthritis & Rheumatology,2019,71(6):991−999.
    [5]
    LIU R, HAN C, WU D, et al. Prevalence of hyperuricemia and gout in mainland China from 2000 to 2014: A systematic review and meta-analysis[J]. BioMed Research International,2015:1−12.
    [6]
    BORGHI C, AGABITI-ROSEI E, JOHNSON R J, et al. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease[J]. European Journal of Internal Medicine,2020,80:1−11. doi: 10.1016/j.ejim.2020.07.006
    [7]
    YAN D, WANG J, JIANG F, et al. A causal relationship between uric acid and diabetic macrovascular disease in Chinese type 2 diabetes patients: A mendelian randomization analysis[J]. International Journal of Cardiology,2016,214:194−199. doi: 10.1016/j.ijcard.2016.03.206
    [8]
    MACKENZIE I S, FORD I, NUKI G, et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): A multicentre, prospective, randomised, open-label, non-inferiority trial[J]. The Lancet,2020,396(10264):1745−1757. doi: 10.1016/S0140-6736(20)32234-0
    [9]
    侯艳培, 张彩霞, 李冰. 降尿酸药物的最新研究进展[J]. 中国中西医结合肾病杂志,2019,20(2):87−89. [HOU Y P, ZHANG C X, LI B. The latest research progress of uric acid lowering drugs[J]. Chinese Journal of Integrated Traditional and Western Nephrology,2019,20(2):87−89. doi: 10.3969/j.issn.1009-587X.2019.02.033

    HOU Y P, ZHANG C X, LI B. The latest research progress of uric acid lowering drugs[J]. Chinese Journal of Integrated Traditional and Western Nephrology, 2019, 20(2): 87-89. doi: 10.3969/j.issn.1009-587X.2019.02.033
    [10]
    LV Q, XU D, ZHANG X, et al. Association of hyperuricemia with immune disorders and intestinal barrier dysfunction[J]. Frontiers in Physiology,2020,11:524236. doi: 10.3389/fphys.2020.524236
    [11]
    SHAN R, NING Y, MA Y, et al. Incidence and risk factors of hyperuricemia among 2.5 million chinese adults during the years 2017-2018[J]. International Journal of Environmental Research Public Health,2021,18(5):2360. doi: 10.3390/ijerph18052360
    [12]
    ESCHE J, KRUPP D, MENSINK G B, et al. Estimates of renal net acid excretion and their relationships with serum uric acid and hyperuricemia in a representative German population sample [J]. Eur J Clin Nutr, 2020, 74(Suppl 1): 63-68.
    [13]
    LU J, DALBETH N, YIN H, et al. Mouse models for human hyperuricaemia: A critical review[J]. Nat Rev Rheumatol,2019,15(7):413−426. doi: 10.1038/s41584-019-0222-x
    [14]
    AUBERSON M, STADELMANN S, STOUDMANN C, et al. SLC2A9 (GLUT9) mediates urate reabsorption in the mouse kidney[J]. Pflügers Archiv-European Journal of Physiology,2018,470(12):1739−1751.
    [15]
    张炳森, 赵泽安, 李咏梅, 等. 橄榄果汁冻干粉的降尿酸与抗痛风作用[J]. 食品工业科技,2021,42(24):347−353. [ZHANG B S, ZHAO Z A, LI Y M, et al. Anti-hyperuricemic and anti-gout effects of olive juice freeze dried powder in rats[J]. Science and Technology of Food Industry,2021,42(24):347−353. doi: 10.13386/j.issn1002-0306.2021030330

    ZHANG B S, ZHAO Z A, LI Y M, et al. Anti-hyperuricemic and anti-gout effects of olive juice freeze dried powder in rats[J]. Science and Technology of Food Industry, 2021, 42(24): 347-353. DOI: 10.13386/j.issn1002-0306.2021030330.
    [16]
    MAJOR T J, TOPLESS R K, DALBETH N, et al. Evaluation of the diet wide contribution to serum urate levels: Meta-analysis of population based cohorts[J]. BMJ,2018,363:k3951.
    [17]
    骆贤亮, 刘滔, 钱忠英, 等. 降尿酸肽对高尿酸血症的作用及研究进展[J]. 食品科学, 2020, 42(5): 340−348.

    LUO X L, LIU T, QIAN Z Y, et al. Recent progress in research on hyperuricemia and uric acid-lowering peptides[J]. Food Science, 2020, 42(5): 340−348.
    [18]
    YERLIKAYA A, DAGEL T, KING C, et al. Dietary and commercialized fructose: Sweet or sour?[J]. International Urology & Nephrology,2017,49(9):1611−1620.
    [19]
    CAO T, LI X, MAO T. Probiotic therapy alleviates hyperuricemia in C57BL/6 mouse model[J]. Biomed Res,2017,28(5):2244−2249.
    [20]
    MASSY Z A, DRUEKE T B. Diet-microbiota interaction and kidney disease progression[J]. Kidney International,2021,99(4):797−800. doi: 10.1016/j.kint.2020.11.006
    [21]
    ZMORA N, SUEZ J, ELINAV E. You are what you eat: Diet, health and the gut microbiota[J]. Nature Reviews Gastroenterology & Hepatology,2019,16(1):35−56.
    [22]
    NAKAGAWA T, LANASPA M A, JOHNSON R J. The effects of fruit consumption in patients with hyperuricaemia or gout[J]. Rheumatology (Oxford),2019,58(7):1133−1141. doi: 10.1093/rheumatology/kez128
    [23]
    VEDDER D, WALRABENSTEIN W, HESLINGA M, et al. Dietary interventions for gout and effect on cardiovascular risk factors: A systematic review[J]. Nutrients,2019,11(12):2955. doi: 10.3390/nu11122955
    [24]
    白佳佳, 夏阳, 吴琪俊, 等. 富含嘌呤食物与高尿酸血症关系研究进展[J]. 中国公共卫生,2017,35(1111):636−638. [BAI J J, XIA Y, WU Q J, et al. Association of purin-rich food with hyperuricemia: Research progress[J]. Chin J Public Health,2017,35(1111):636−638.

    BAI J J, XIA Y, WU Q J, et al. Association of purin-rich food with hyperuricemia: research progress[J]. Chin J Public Health, 2017, 35(1111): 636-638.
    [25]
    蔡路昀, 冷利萍, 曹爱玲, 等. 食品中嘌呤含量分布研究进展[J]. 食品科学技术学报, 2018, 36(5): 78-85.

    CAI L Y, LENG L P, CAO A L, et al. Research progress of purine content distribution in food[J]. Journal of Food Science and Technology, 2018, 36(5): 74-81.
    [26]
    JAMNIK J, REHMAN S, BLANCO M S, et al. Fructose intake and risk of gout and hyperuricemia: A systematic review and meta-analysis of prospective cohort studies[J]. BMJ Open,2016,6(10):e013191. doi: 10.1136/bmjopen-2016-013191
    [27]
    WANG Z, BERGERON N, LEVISON B S, et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women[J]. Eur Heart J,2019,40(7):583−594. doi: 10.1093/eurheartj/ehy799
    [28]
    仲召鹏, 胡小松, 郑浩, 等. 膳食脂肪、肠道微生物与宿主健康的研究进展[J]. 生物工程学报,2021,37(11):1−17. [ZHONG Z P, HU X S, ZHENG H, et al. Crosstalk between dietary fat, the gut microbiome, and metabolic health[J]. Chinese Journal of Biotechnology,2021,37(11):1−17. doi: 10.13345/j.cjb.210442

    ZHONG Z P, HU X S, ZHENG H, et al. Crosstalk between dietary fat, the gut microbiome, and metabolic health[J]. Chinese Journal of Biotechnology, 2021, 37(11): 1-17. doi: 10.13345/j.cjb.210442
    [29]
    TASKINEN M R, PACKARD C J, BOREN J. Dietary fructose and the metabolic syndrome[J]. Nutrients,2019,11(9):1987. doi: 10.3390/nu11091987
    [30]
    张晶, 李昊, 师建辉, 等. 果糖与代谢性疾病[J]. 中国病理生理杂志,2020,36(4):163−168. [ZHANG J, LI H, SHI J H, et al. Fructose and metabolic diseases[J]. Chinese Journal of Pathophysiology,2020,36(4):163−168. doi: 10.3969/j.issn.1000-4718.2020.04.022

    ZHANG J, LI H, SHI J H, et al. Fructose and metabolic diseases[J]. Chinese Journal of Pathophysiology, 2020, 36(04): 163-168. doi: 10.3969/j.issn.1000-4718.2020.04.022
    [31]
    ZHANG C W, LI L J, ZHANG Y P, et al. Recent advances in fructose intake and risk of hyperuricemia[J]. Biomedicine & Pharmacotherapy,2020,131:110795.
    [32]
    EBRAHIMPOUR-KOUJAN S, SANEEI P, LARIJANI B, et al. Consumption of sugar sweetened beverages and dietary fructose in relation to risk of gout and hyperuricemia: A systematic review and meta-analysis[J]. Critical Reviews in Food Science and Nutrition,2020,60(1):1−10. doi: 10.1080/10408398.2018.1503155
    [33]
    ZHANG T, BIAN S, GU Y, et al. Sugar-containing carbonated beverages consumption is associated with hyperuricemia in general adults: A cross-sectional study[J]. Nutrition Metabolism and Cardiovascular Diseases,2020,30(10):1645−1652. doi: 10.1016/j.numecd.2020.05.022
    [34]
    DO M H, LEE E, OH M J, et al. High-glucose or -fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change[J]. Nutrients,2018,10(6):761. doi: 10.3390/nu10060761
    [35]
    SILVA J C P, MOTA M, MARTINS F O, et al. Intestinal microbial and metabolic profiling of mice fed with high-glucose and high-fructose diets[J]. Journal of Proteome Research,2018,17(8):2880−2891. doi: 10.1021/acs.jproteome.8b00354
    [36]
    SUN S Z, FLICKINGER B D, WILLIAMSON-HUGHES P S, et al. Lack of association between dietary fructose and hyperuricemia risk in adults[J]. Nutrition & Metabolism,2010,7(1):16.
    [37]
    YU Z, LOWNDES J, RIPPE J. High-fructose corn syrup and sucrose have equivalent effects on energy-regulating hormones at normal human consumption levels[J]. Nutr Res,2013,33(12):1043−1052. doi: 10.1016/j.nutres.2013.07.020
    [38]
    AIHEMAITIJIANG S, ZHANG Y, ZHANG L, et al. The sssociation between purine-rich food intake and hyperuricemia: A cross-sectional study in chinese adult residents[J]. Nutrients,2020,12(12):3835. doi: 10.3390/nu12123835
    [39]
    黄胜男, 林志健, 张冰, 等. 肠道菌群结构变化与高尿酸血症发生的关系[J]. 北京中医药大学学报,2015,38(7):425−456. [HUANG S N, LIN Z J, ZHANG B, et al. Correlation between structural shifts of gut microbiota and hyperuricemia in quails[J]. Journal of Beijing University of Traditional Chinese Medicine,2015,38(7):425−456. doi: 10.3969/j.issn.1006-2157.2015.07.006

    HUANG S N, LIN Z J, ZHANG B, et al. Correlation between structural shifts of gut microbiota and hyperuricemia in quails[J]. Journal of Beijing University of Traditional Chinese Medicine, 2015, 38(7): 425-456. doi: 10.3969/j.issn.1006-2157.2015.07.006
    [40]
    LIU X, LV Q, REN H, et al. The altered gut microbiota of high-purine-induced hyperuricemia rats and its correlation with hyperuricemia[J]. PeerJ,2020,8(3):e8664.
    [41]
    YU Y, LIU Q, LI H, et al. Alterations of the gut microbiome associated with the treatment of hyperuricaemia in male rats[J]. Frontiers in Microbiology,2018(9):2233.
    [42]
    GUO Z, ZHANG J, WANG Z, et al. Intestinal microbiota distinguish gout patients from healthy humans[J]. Scientific Reports,2016(6):20602.
    [43]
    HSU C L, HOU Y H, WANG C S, et al. Antiobesity and uric acid-lowering effect of Lactobacillus plantarum GKM3 in high-fat-diet-induced obese rats[J]. Journal of the American College of Nutrition,2019,38(7):623−632. doi: 10.1080/07315724.2019.1571454
    [44]
    SUN Y, GE X, LI X, et al. High-fat diet promotes renal injury by inducing oxidative stress and mitochondrial dysfunction[J]. Cell Death & Disease,2020,11(10):914.
    [45]
    TORRES-FUENTES C, SCHELLEKENS H, DINAN T G, et al. The microbiota–gut–brain axis in obesity[J]. The Lancet Gastroenterology & Hepatology,2017,2(10):747−756.
    [46]
    YUN Y, YIN H, GAO Z, et al. Intestinal tract is an important organ for lowering serum uric acid in rats[J]. PLoS One,2017,12(12):e0190194. doi: 10.1371/journal.pone.0190194
    [47]
    XU D, LV Q, WANG X, et al. Hyperuricemia is associated with impaired intestinal permeability in mice[J]. AJP Gastrointestinal and Liver Physiology,2019,317(4):484−492. doi: 10.1152/ajpgi.00151.2019
    [48]
    SHAO T, SHAO L, LI H, et al. Combined signature of the fecal microbiome and metabolome in patients with gout[J]. Frontiers in Microbiology,2017,8:268.
    [49]
    ARMOUR C, NAYFACH S, POLLARD K, et al. A metagenomic meta-analysis reveals functional signatures of health and disease in the human gut microbiome[J]. mSystems,2019,4(4):e00332.
    [50]
    XING S C, MENG D M, CHEN Y, et al. Study on the diversity of bacteroides and clostridium in patients with primary gout[J]. Cell Biochemistry and Biophysics,2015,71(2):707−715. doi: 10.1007/s12013-014-0253-5
    [51]
    黄胜男, 林志健, 张冰, 等. 高尿酸血症鹌鹑肠道菌群结构分析[J]. 中国实验动物学报,2020,28(1):17−22. [HUANG S N, LIN Z J, ZHANG B, et al. Analysis of the gut microbiota structure in quails with hyperuricemia[J]. Acta Labortorium Animalis Scientia Sinica,2020,28(1):17−22. doi: 10.3969/j.issn.1005-4847.2020.01.003

    HUANG S N, LIN Z J, ZHANG B, et al. Analysis of the gut microbiota structure in quails with hyperuricemia[J]. Acta Labortorium Animalis Scientia Sinica, 2020, 28(1): 17-22. doi: 10.3969/j.issn.1005-4847.2020.01.003
    [52]
    EL RIDI R, TALLIMA H. Physiological functions and pathogenic potential of uric acid: A review[J]. Journal of Advanced Research,2017,8(5):487−493. doi: 10.1016/j.jare.2017.03.003
    [53]
    YAMADA N, IWAMOTO C, KANO H, et al. Evaluation of purine utilization by Lactobacillus gasseri strains with potential to decrease the absorption of food-derived purines in the human intestine[J]. Nucleosides Nucleotides Nucleic Acids,2016,35(10−12):670−676. doi: 10.1080/15257770.2015.1125000
    [54]
    BUZARD J, BISHOP C, TALBOTT J H. Recovery in humans of intravenously injected isotopic uric acid[J]. Journal of Biological Chemistry,1952,196(1):179. doi: 10.1016/S0021-9258(18)55717-3
    [55]
    HARTWICH K, POEHLEIN A, DANIEL R. The purine-utilizing bacterium Clostridium acidurici 9a: A genome-guided metabolic reconsideration[J]. PLoS One,2012,7(12):e51662. doi: 10.1371/journal.pone.0051662
    [56]
    SORENSEN L B. Role of the intestinal tract in the elimination of uric acid[J]. Arthritis and Rheumatism,1965,8(5):694−706.
    [57]
    HSIEH C Y, LIN H J, CHEN C H, et al. Chronic kidney disease and stroke[J]. The Lancet Neurology,2014,13(11):1071.
    [58]
    CRANE J K. Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli[J]. Gut Microbes,2013,4(5):388−391. doi: 10.4161/gmic.25584
    [59]
    YASIRI A, SEUBSASANA S. Isolation of bile salt hydrolase and uricase producing Lactobacillus brevis SF121 from pak sian dong (Fermented Spider Plant) for using as probiotics[J]. Journal of Pure and Applied Microbiology,2020,14(3):1715−1722. doi: 10.22207/JPAM.14.3.10
    [60]
    王雨, 林志健, 边猛, 等. 维药菊苣提取物对高尿酸血症状态下肠道屏障的影响[J]. 中华中医药杂志,2018,33(5):42−47. [WANG Y, LIN Z J, BIAN M, et al. Effects on intervention of intestinal barrier with uyghur medicine Cichorium intybus Linn in hyperuricemia[J]. China Journal of Traditional Chinese Medicine and Pharmacy,2018,33(5):42−47.

    WANG Y, LIN Z J, BIAN M, et al. Effects on intervention of intestinal barrier with uyghur medicine Cichorium intybus Linn in hyperuricemia[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2018, 33(05): 42-47.
    [61]
    GUO Y, YU Y, LI H, et al. Inulin supplementation ameliorates hyperuricemia and modulates gut microbiota in Uox-knockout mice[J]. European Journal of Nutrition,2020,60(4):1−14.
    [62]
    邹 琳, 冯凤琴. 食品中降尿酸活性物质及其作用机理研究进展[J]. 食品工业科技,2019,40(13):352−357. [ZOU L, FENG F Q. Research progress of uric acid-lowering bioactive compounds in food and their mechanisms[J]. Science and Technology of Food Industry,2019,40(13):352−357. doi: 10.13386/j.issn1002-0306.2019.13.059

    ZOU L, FENG F Q. Research progress of uric acid-lowering bioactive compounds in food and their mechanisms[J]. Science and Technology of Food Industry, 2019, 40(13): 352-357. doi: 10.13386/j.issn1002-0306.2019.13.059
    [63]
    MORIMOTO C, TAMURA Y, ASAKAWA S, et al. ABCG2 expression and uric acid metabolism of the intestine in hyperuricemia model rat[J]. Nucleosides Nucleotides Nucleic Acids,2020,39(5):744−759. doi: 10.1080/15257770.2019.1694684
    [64]
    PAN L, HAN P, MA S, et al. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia[J]. Acta Pharmaceutica Sinica B,2020,10(2):249−261. doi: 10.1016/j.apsb.2019.10.007
    [65]
    MATSUO H, TSUNODA T, OOYAMA K, et al. Hyperuricemia in acute gastroenteritis is caused by decreased urate excretion via ABCG2[J]. Scientific Reports,2016,6:31003. doi: 10.1038/srep31003
    [66]
    NIGAM S K, BHATNAGAR V. The systems biology of uric acid transporters: The role of remote sensing and signaling[J]. Current Opinion in Nephrology and Hypertension,2018,27(4):305−313. doi: 10.1097/MNH.0000000000000427
    [67]
    KOH A, DE VADDER F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites[J]. Cell,2016,165(6):1332−1345. doi: 10.1016/j.cell.2016.05.041
    [68]
    朱广素, 王刚, 王园园, 等. 植物乳杆菌通过调节肠道短链脂肪酸水平缓解代谢综合征[J]. 食品科学,2019,40(13):102−109. [ZHU G S, WANG G, WANG Y Y, et al. Lactobacillus plantarum alleviates metabolic syndrome by modulating intestinal short-chain fatty acid levels[J]. Food Science,2019,40(13):102−109. doi: 10.7506/spkx1002-6630-20180301-004

    ZHU G S, WANG G, WANG Y Y. Lactobacillus plantarum alleviates metabolic syndrome by modulating intestinal short-chain fatty acid levels[J]. Food science, 2019, 40(13): 102-109. doi: 10.7506/spkx1002-6630-20180301-004
    [69]
    ROSSER E C, PIPER C J M, MATEI D E, et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells[J]. Cell Metabolism,2020,31(4):837−851. doi: 10.1016/j.cmet.2020.03.003
    [70]
    TERKELTAUB R. What makes gouty inflammation so variable?[J]. Bmc Medicine, 2017, 15(1): 158.
    [71]
    CLEOPHAS M C, CRISAN T O, JOOSTEN L A. Factors modulating the inflammatory response in acute gouty arthritis[J]. Curr Opin Rheumatol,2017,29(2):163−170.
    [72]
    VIEIRA A T, GALVAO I, MACIA L M, et al. Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice[J]. J Leukoc Biol,2017,101(1):275−284. doi: 10.1189/jlb.3A1015-453RRR
    [73]
    YAO Y, CAI X, FEI W, et al. The role of short-chain fatty acids in immunity, inflammation and metabolism[J]. Critical Reviews in Food Science and Nutrition,2020:1−12.
    [74]
    GARCIA-ARROYO F E, GONZAGA G, MUNOZ-JIMENEZ I, et al. Probiotic supplements prevented oxonic acid-induced hyperuricemia and renal damage[J]. PLoS One,2018,13(8):e0202901. doi: 10.1371/journal.pone.0202901
    [75]
    王力. 酪酸梭菌对高尿酸血症大鼠血尿酸及炎性因子水平的影响[J]. 南方医科大学学报,2017,37(5):678−682. [WANG L. Effects of Clostridium butyricum on serum uric acid and inflammatory mediators in rats with hyperuricemia[J]. Journal of Southern Medical University,2017,37(5):678−682. doi: 10.3969/j.issn.1673-4254.2017.05.19

    WANG L. Effects of Clostridium butyricum on serum uric acid and inflammatory mediators in rats with hyperuricemia[J]. Journal of Southern Medical University, 2017, 37(5): 678-682. doi: 10.3969/j.issn.1673-4254.2017.05.19
    [76]
    WU Y, YE Z, FENG P, et al. Limosilactobacillus fermentum JL-3 isolated from “Jiangshui” ameliorates hyperuricemia by degrading uric acid[J]. Gut Microbes,2021,13(1):1−18.
    [77]
    张晓晖, 关海滨, 冬颖, 等. 植物乳杆菌ZXH-1304S降解肌酐和尿酸的活力研究[J]. 食品工业科技,2019,40(11):174−177. [ZHANG X H, GUAN H B, DONG Y, et al. Degrading activity of creatinine and uric acid of Lactobacillus plantarum ZXH-1304S[J]. Science and Technology of Food Industry,2019,40(11):174−177. doi: 10.13386/j.issn1002-0306.2019.11.029

    ZHANG X H, GUAN H B, DONG Y, et al. Degrading activity of creatinine and uric acid of Lactobacillus plantarum ZXH-1304S[J]. Science and Technology of Food Industry, 2019, 40(11): 174-177. doi: 10.13386/j.issn1002-0306.2019.11.029
    [78]
    WANG H, MEI L, DENG Y, et al. Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis[J]. Nutrition,2019,62:63−73. doi: 10.1016/j.nut.2018.11.018
    [79]
    NI C, LI X, WANG L, et al. Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism[J]. Food Funct,2021,12(15):7054−7067. doi: 10.1039/D1FO00198A
    [80]
    HAN J, WANG X, TANG S, et al. Protective effects of tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation mediated by gut microbiota[J]. The FASEB Journal,2020,34(4):5061−5076. doi: 10.1096/fj.201902597RR
    [81]
    ZHANG R, GAO S J, ZHU C Y, et al. Characterization of a novel alkaline Arxula adeninivorans urate oxidase expressed in Escherichia coli and its application in reducing uric acid content of food[J]. Food Chemistry,2019,293:254−262. doi: 10.1016/j.foodchem.2019.04.112
    [82]
    HANDAYANI, UTAMI, HIDAYAT, et al. Screening of lactic acid bacteria producing uricase and stability assessment in simulated gastrointestinal conditions[J]. International Food Research Journal,2018,25(4):1661−1667.
  • Cited by

    Periodical cited type(6)

    1. 李杰,李霜,张鹏霞,祝丽玲,周健,孙雪微,宋丽新. 发酵食品中具有潜在降尿酸功能乳酸菌的筛选及特性分析. 食品研究与开发. 2024(07): 174-180 .
    2. 于鑫迪,刘静雅,任秀梅,陈炼红. 功能性牦牛酸奶制备、贮藏期内品质及降嘌呤活性研究. 食品工业科技. 2024(21): 20-29 . 本站查看
    3. 莫星忧,欧仕益,毋福海,吴帅,吴慧,李倩. 膳食对高尿酸血症的影响及控制研究进展. 农产品加工. 2024(22): 100-104 .
    4. 陈天琦,屈墨涵,张春红,李丹,尹雪斌. 食药同源对防治慢性代谢性疾病的作用及功能农业解决方案. 肥料与健康. 2024(06): 86-90 .
    5. 付喜华,韩四海,刘建学,李佩艳,郭金英,罗登林,岳崇慧. 葡萄蒸馏酒对高尿酸血症模型小鼠肠道菌群的调节作用. 食品科学. 2023(07): 161-168 .
    6. 陈聪聪,周全. 基于网络药理学与分子对接探讨四妙丸“异病同治”强直性脊柱炎和高尿酸血症的作用机制. 河南中医. 2023(10): 1534-1542 .

    Other cited types(13)

Catalog

    Article Metrics

    Article views (789) PDF downloads (63) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return