CAO Yanan, XIANG Yue, YANG Sihui, et al. Research Progress on Nutrition and Function of Coarse Grain Sprouts[J]. Science and Technology of Food Industry, 2022, 43(18): 433−446. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080290.
Citation: CAO Yanan, XIANG Yue, YANG Sihui, et al. Research Progress on Nutrition and Function of Coarse Grain Sprouts[J]. Science and Technology of Food Industry, 2022, 43(18): 433−446. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080290.

Research Progress on Nutrition and Function of Coarse Grain Sprouts

More Information
  • Received Date: August 25, 2021
  • Available Online: July 09, 2022
  • Coarse grain is an important part of dietary structure, but the poor palatability and processing characteristics restrict the further development of coarse grain industry. After germination, its nutrients and functional active components are enhanced, and its taste and processing characteristics are changed. It is a new food raw material with great development potential. Different kinds of coarse grain sprouts provide consumers with diversified choices, but their nutritional function differences are lack of systematic analysis. This paper compares the contents of nutritional components and functional components of different kinds of coarse grain sprouts, expounds the lipid-lowering, hypoglycemic and anti-inflammatory effects of coarse grain sprouts and their products, and expoundes the production technology and quality improvement methods of coarse grain sprouts, so as to provide reference and ideas for improving people's dietary structure and the further development and utilization of coarse grain sprouts.
  • [1]
    向月, 曹亚楠, 赵钢, 等. 杂粮营养功能与安全研究进展[J]. 食品工业科技,2021,42(14):362−370. [XIANG Y, CAO Y N, ZHAO G, et al. Advances in the nutritional function and safety of coarse cereals[J]. Science and Technology of Food Industry,2021,42(14):362−370.

    XIANG Y, CAO Y N, ZHAO G, et al. Advances in the nutritional function and safety of coarse cereals[J]. Science and Technology of Food Industry, 2021, 42(14): 362−370.
    [2]
    郭丽萍, 朱英莲, 唐娟. 十字花科芽苗菜与成熟蔬菜生物活性成分的比较[J]. 营养学报,2017,39(6):588−593. [GUO L P, ZHU Y L, TANG J. Comparison of the bioactive compounds in cruciferous vegetables and their sprouts[J]. Acta Nutrimenta Sinica,2017,39(6):588−593. doi: 10.3969/j.issn.0512-7955.2017.06.014

    GUO L P, ZHU Y L, TANG J. Comparison of the bioactive compounds in cruciferous vegetables and their sprouts[J]. Acta Nutrimenta Sinica, 2017, 39(6): 588-593. doi: 10.3969/j.issn.0512-7955.2017.06.014
    [3]
    兰成云, 王俊峰, 孙杨, 等. 芽苗菜研究进展[J]. 安徽农业科学,2018,46(33):5−7. [LAN C Y, WANG J F, YANG S. Research progress of bud seedling vegetables in china[J]. Journal of Anhui Agricultural Sciences,2018,46(33):5−7. doi: 10.3969/j.issn.0517-6611.2018.33.002

    LAN C Y, WANG J F, YANG S. Research progress of bud seedling vegetables in china[J]. Journal of Anhui Agricultural Sciences, 2018, 46(33): 5-7. doi: 10.3969/j.issn.0517-6611.2018.33.002
    [4]
    马麟, 彭镰, 赵钢. 我国苦荞芽菜生产及其食品开发研究进展[J]. 农产品加工,2015(11):64−67,71. [MA L, PENG L, ZHAO G. Research progress in tatary buckwheat sprouts production and related food[J]. Farm Products Processing,2015(11):64−67,71.

    MA L, PENG L, ZHAO G. Research progress in tatary buckwheat sprouts production and related food[J]. Farm Products Processing, 2015(11): 64-67, 71.
    [5]
    马先红, 刘景圣, 陈翔宇, 等. 我国发芽粮食及食品应用研究最新进展[J]. 粮食与油脂,2015,28(12):1−3. [MA X H, LIU J S, CHEN X Y, et al. Research progress on sprouted grain and food application in china[J]. Cereals & Oils,2015,28(12):1−3. doi: 10.3969/j.issn.1008-9578.2015.12.001

    MA X H, LIU J S, CHEN X Y, et al. Research progress on sprouted grain and food application in china[J]. Cereals & Oils, 2015, 28(12): 1-3. doi: 10.3969/j.issn.1008-9578.2015.12.001
    [6]
    刘瑞, 于章龙, 柴永峰, 等. 粮谷及其发芽物质变化研究进展[J]. 食品工业科技,2019,40(13):293−298. [LIU R, YU Z L, CHAI Y F, et al. Research advances of substances variation in grain and germinated grain[J]. Science and Technology of Food Industry,2019,40(13):293−298.

    LIU R, YU Z L, CHAI Y F, et al. Research advances of substances variation in grain and germinated grain[J]. Science and Technology of Food Industry, 2019, 40(13): 293-298.
    [7]
    秦萍. 发芽杂粮代餐粉的研制[D]. 沈阳: 沈阳农业大学, 2019

    QIN P. Development of meal replacement powder of germinatedgrains[D]. Shenyang: Shenyang Agricultural University, 2019.
    [8]
    李朋收, 刘洋洋, 范冰舵, 等. 鹰嘴豆化学成分及药理作用研究进展[J]. 中国实验方剂学杂志,2014,20(11):235−238. [LI P S, LIU Y Y, FAN B D, et al. Research progress of chemical composition and pharmacological effectiveness of chickpeas[J]. Chinese Journal of Experimental Traditional Medical Formulae,2014,20(11):235−238.

    LI P S, LIU Y Y, FAN B D, et al. Research progress of chemical composition and pharmacological effectiveness of chickpeas[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2014, 20(11): 235-238.
    [9]
    肖俊松, 吴华, 张亚歌. 鹰嘴豆萌发过程中营养成分和抗营养因子的变化规律[J]. 食品科学,2011,54(24):7037−7041. [XIAO J S, WU H, ZHANG Y G. Changes in nutritional composition and antinutritional factors during the germination process of chickpea (Cicer arietinum L.)[J]. Food Science,2011,54(24):7037−7041.

    XIAO J S, WU H, ZHANG Y G. Changes in nutritional composition and antinutritional factors during the germination process of chickpea (Cicer arietinum L. )[J]. Food Science, 2011, 54(24): 7037-7041.
    [10]
    WONGSIGI S, OHSHIMA T, DUANGMAL K. Chemical composition, amino acid profile and antioxidant activities of germinated mung beans (Vigna radiata)[J]. Journal of Food Processing and Preservation,2015,39(6):1956−1964. doi: 10.1111/jfpp.12434
    [11]
    KIM S L, KIM S K, PARK C H. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable[J]. Food Research International,2004,37(4):319−327.
    [12]
    胡亚军, 姜莹, 冯丽君, 等. 苦荞芽菜活性成分变化规律及营养成分分析评价[J]. 干旱地区农业研究,2008,107(2):117−121. [HU Y J, JIANG Y, FENG L J, et al. Analysis and evaluation of active components and nutrients in tartary buckwheat sprouts[J]. Agricultural Research in the Arid Areas,2008,107(2):117−121.

    HU Y J, JIANG Y, FENG L J, et al. Analysis and evaluation of active components and nutrients in tartary buckwheat sprouts[J]. Agricultural Research in the Arid Areas, 2008, 107(2): 117-121.
    [13]
    黄金, 秦礼康, 石庆楠, 等. 藜麦萌芽期营养与功能成分的动态变化[J]. 食品与机械,2017,33(5):54−58. [HUANG J, QIN L K, SHI Q N, et al. Dynamic changes of nutrational and functional ingredients curing germination of quinoa[J]. Food & Machinery,2017,33(5):54−58.

    HUANG J, QIN L K, SHI Q N, et al. Dynamic changes of nutrational and functional ingredients curing germination of quinoa[J]. Food & Machinery, 2017, 33(5): 54-58.
    [14]
    张端莉, 桂余, 方国珊, 等. 大麦在发芽过程中营养物质的变化及其营养评价[J]. 食品科学,2014,35(1):229−233. [ZHANG D L, YU G, FANG G S, et al. Nutrient change and nutritional evaluation of barley during germination[J]. Food Science,2014,35(1):229−233. doi: 10.7506/spkx1002-6630-201401045

    ZHANG D L, YU G, FANG G S, et al. Nutrient change and nutritional evaluation of barley during germination[J]. Food Science, 2014, 35(1): 229-233. doi: 10.7506/spkx1002-6630-201401045
    [15]
    郑少杰, 任旺, 张小利, 等. 绿豆芽萌发过程中氨基酸动态变化及营养评价[J]. 食品与发酵工业,2016,42(10):81−86. [ZHENG S J, REN W, ZHANG X L, et al. Dynamic changes of amino acids and nutritional evaluation during mung bean bud germination[J]. Food and Fermentation Industries,2016,42(10):81−86.

    ZHENG S J, REN W, ZHANG X L, et al. Dynamic changes of amino acids and nutritional evaluation during mung bean bud germination[J]. Food and Fermentation Industries, 2016, 42(10): 81-86.
    [16]
    梁亚静. 不同加工方式对芸豆营养特性及抗氧化活性的影响[D]. 长沙: 中南林业科技大学, 2015

    LIANG Y J. Effects of different processing methods on nutritional properties and antioxidant activity of kidney beans[D]. Changsha: Central South University of Forestry & Technology, 2015.
    [17]
    刘海燕. 不同浓度的微量元素对豌豆芽苗菜的生长和营养品质的影响[D]. 合肥: 安徽农业大学, 2015

    Effects of different concerntrations of trace elements on growth and quality of pea sprouts[D]. Hefei: Anhui Agricultural University, 2015.
    [18]
    冀佩双, 单璐, 吕国涛, 等. 柱前衍生高效液相色谱法测定糜子发芽过程中氨基酸变化[J]. 山西农业科学,2015,43(10):1230−1233, 1236. [JI P S, SHAN L, LÜ G T, et al. Determination of amino acids by high performance liquid chromatography with pre-column derivatization during proso millet germination[J]. Journal of Shanxi Agricultural Sciences,2015,43(10):1230−1233, 1236. doi: 10.3969/j.issn.1002-2481.2015.10.04

    JI P S, SHAN L, LÜ G T, et al. Determination of amino acids by high performance liquid chromatography with pre-column derivatization during proso millet germination[J]. Journal of Shanxi Agricultural Sciences, 2015, 43(10): 1230-1233, 1236. doi: 10.3969/j.issn.1002-2481.2015.10.04
    [19]
    王倩雯. 芸豆萌发过程中营养成分淀粉理化特性变化及相关性研究[D]. 大庆: 黑龙江八一农垦大学, 2015

    WANG Q W. Master dissertation changes of nutritional composition and starch physicochemical properties and correlation study during kidney bean germination[D]. Daqing: Heilongjiang Bayi Agricultural University, 2015.
    [20]
    胡筱波, 朱新荣, 吴谋成. 豆类在发芽过程中脂肪酸含量的变化[J]. 粮油加工,2007(7):123−125. [HU X B. Changes of fatty acid content in beans during germination[J]. Cereals and Oils Processing,2007(7):123−125.

    HU X B. Changes of fatty acid content in beans during germination[J]. Cereals and Oils Processing, 2007(7): 123-125.
    [21]
    ERIKA P V, ALCA J J, SARAVIA G R, et al. Comparison of the lipid profile and tocopherol content of four Peruvianquinoa (Chenopodium quinoa Willd. ) cultivars (‘Amarilla de Maranganí’, ‘Blanca de Juli’, INIA 415 ‘Roja Pasankalla’, INIA 420 ‘Negra Collana’) during germination[J]. Journal of Cereal Science,2019(88):132−137.
    [22]
    李童, 杨静静, 陆健. 大麦品种和制麦过程对麦芽含脂量的影响[J]. 啤酒科技,2014(8):59−63. [LI T, YANG J J, LU J. Effects of barley varieties and wheat making process on malt fat content[J]. Beer Tech,2014(8):59−63.

    LI T, YANG J J, LU J. Effects of barley varieties and wheat making process on malt fat content[J]. Beer Tech, 2014(8): 59-63.
    [23]
    徐磊. 发芽对薏米营养组成理化特性及生物活性的影响[D]. 无锡: 江南大学, 2017

    XU L. Effect of germination on the nutritional components, physicochemical properties and biological activities of adlay[D]. Wuxi: Jiangnan University, 2017.
    [24]
    潘姝璇, 王嘉怡, 陈建, 等. 发芽糙米多糖微波辅助提取工艺及其抗氧化活性研究[J]. 食品与机械, 2017, 33(11): 167−172,194

    PAN S X, WANG J Y, CHEN J, et al. Optimization on process of microwave assisted extraction and antioxidant activities of polysaccharides from germinated brown rice[J]. Food & Machinery, 2017, 33(11): 167−172,194.
    [25]
    张俊, 胡玲, 张三杉, 等. 不同发芽阶段高粱粉理化及功能特性的变化[J]. 食品与发酵工业,2021,47(6):68−74. [ZHANG J, HU L, ZHANG S S, et al. Changes of physicochemical and functional properties of sorghum flour at differ-ent germination stages[J]. Food and Fermentation Industries,2021,47(6):68−74.

    ZHANG J, HU L, ZHANG S S, et al. Changes of physicochemical and functional properties of sorghum flour at differ-ent germination stages[J]. Food and Fermentation Industries, 2021, 47(6): 68-74.
    [26]
    杨春, 丁卫英, 周柏玲, 等. 发芽对黑小麦、黑苦荞淀粉物理化学特性的影响[J]. 中国粮油学报,2011,26(12):5−10. [YANG C, DING W Y, ZHOU B L, et al. Effects of germination on physicochemical properties of black wheat and black tartary buckwheat starch[J]. Journal of the Chinese Cereals and Oils Association,2011,26(12):5−10.

    [YANG C, DING W Y, ZHOU B L, et al. Effects of germination on physicochemical properties of black wheat and black tartary buckwheat starch[J]. Journal of the Chinese Cereals and Oils Association, 2011, 26(12): 5-10.
    [27]
    SHEKIB L A. In-vitro digestibility and microscopic appearance of germinated legume starches and their effect on dietary protein utilization[J]. Food Chemistry,1994,50(1):59−63. doi: 10.1016/0308-8146(94)90093-0
    [28]
    连晓蔚. 肠道菌群利用几种膳食纤维体外发酵产短链脂肪酸的研究[D]. 广州: 暨南大学, 2011

    LIAN X W. Gut microbiota in vitro fermenting destarched dietary fiber to produce SCFA[D]. Guangzhou: Jinan University, 2011.
    [29]
    黄凯丰, 时政, 欧腾, 等. 荞麦苗的营养保健成分分析[J]. 北方园艺,2011(11):22−24. [HUANG K F, SHI Z, OU T. Analysis of nutritional and health components of buckwheat seedlings[J]. Northern Horticulture,2011(11):22−24.

    HUANG K F, SHI Z, OU T. Analysis of nutritional and health components of buckwheat seedlings[J]. Northern Horticulture, 2011(11): 22-24.
    [30]
    蒋芮, 李雅婷, 欧阳鹏凌, 等. 发芽对黑大麦游离氨基酸及其他营养成分的影响[J]. 食品工业科技,2018,39(6):38−42. [JIANG R, LI Y T, OUYANG P L, et al. Effects of germination on free amino acids and other nutrients in black barley[J]. Science and Technology of Food Industry,2018,39(6):38−42.

    JIANG R, LI Y T, OUYANG P L, et al. Effects of germination on free amino acids and other nutrients in black barley[J]. Science and Technology of Food Industry, 2018, 39(6): 38-42.
    [31]
    周小理, 宋鑫莉. 萌动对植物籽粒营养成分的影响及荞麦萌动食品的研究[J]. 上海应用技术学院学报(自然科学版),2009,9(3):171−174. [ZHOU X L, SONG X L. Effects of sprouting animals on plant grain nutrients and buckwheat sprouting food[J]. Journal of Shanghai Institute of Applied Technology (Natural Science Edition),2009,9(3):171−174.

    ZHOU X L, SONG X L. Effects of sprouting animals on plant grain nutrients and buckwheat sprouting food[J]. Journal of Shanghai Institute of Applied Technology (Natural Science Edition), 2009, 9(3): 171-174.
    [32]
    BOHN L, MEYER A S, RASMUSSEN S K. Phytate: Impact on environment and human nutrition. A challenge for molecular breeding[J]. Journal of Zhejiang University Science B,2008,9(3):165−191. doi: 10.1631/jzus.B0710640
    [33]
    傅维, 吕晓玲, 孙勇民. 发芽黑米中氨基丁酸及矿物元素含量变化的研究[J]. 食品工业科技,2011,32(9):178−180. [WEI F U, LÜ X L, SUN Y M. Study on content changes of γ-aminobutyric acid and mineral element during the processing of black rice germination[J]. Science and Technology of Food Industry,2011,32(9):178−180.

    WEI F U, LÜ X L, SUN Y M. Study on content changes of γ-aminobutyric acid and mineral element during the processing of black rice germination[J]. Science and Technology of Food Industry, 2011, 32(9): 178-180.
    [34]
    刘金芳, 胡广林, 唐琦, 等. 发芽对豇豆营养成分与微量元素的影响[J]. 食品研究与开发,2018,39(1):100−105. [LIU J F, HU G L, TANG Q, et al. Effects of germination on nutritional composition and trace elements in cowpea[J]. Food Research and Development,2018,39(1):100−105. doi: 10.3969/j.issn.1005-6521.2018.01.020

    LIU J F, HU G L, TANG Q, et al. Effects of germination on nutritional composition and trace elements in cowpea[J]. Food Research and Development, 2018, 39(1): 100-105. doi: 10.3969/j.issn.1005-6521.2018.01.020
    [35]
    LINTSCHINGER J, FUCHS N, MOSER H, et al. Uptake of various trace elements during germination of wheat, buckwheat and quinoa[J]. Crossref,1997,50(3):223−237.
    [36]
    张超, 黄卫宁, 卢艳. 荞麦芽营养及生产研究进展[J]. 粮食与油脂,2005(5):9−11. [ZHANG C, HUANG W N, LU Y. Research progress in nutrition and mass production of buckwheat sprout[J]. Journal of Cereals & Oils,2005(5):9−11. doi: 10.3969/j.issn.1008-9578.2005.05.003

    ZHANG C, HUANG W N, LU Y. Research progress in nutrition and mass production of buckwheat sprout[J]. Journal of Cereals & Oils, 2005(5): 9-11. doi: 10.3969/j.issn.1008-9578.2005.05.003
    [37]
    张琴萍. 藜麦芽苗菜营养功能品质特性研究[D]. 成都: 成都大学, 2020

    ZHANG Q P. Study on the nutritional and functional characteristics of quinoa (Chenopoditm guinod Willd.) Sprouts[D]. Chengdu: Chengdu University, 2020.
    [38]
    穆竟, 高健, 张娜. 改善种子萌发技术及其营养成分研究进展[J]. 黑龙江科学,2019,10(16):1−5. [MU J, GAO J, ZHANG N. Advances in improvement of seed germination technology and its nutritional components[J]. Heilongjiang Science,2019,10(16):1−5. doi: 10.3969/j.issn.1674-8646.2019.16.001

    MU J, GAO J, ZHANG N. Advances in improvement of seed germination technology and its nutritional components[J]. Heilongjiang Science, 2019, 10(16): 1-5. doi: 10.3969/j.issn.1674-8646.2019.16.001
    [39]
    陈淑芳. 富硒发芽苦荞生理变化及其蛋白抗氧化活性研究[D]. 临汾: 山西师范大学, 2019

    CHEN S F. Study on physiological changes and antioxidant actvity of protein in Se-enriched and sprouted tartary buckwheat[D]. Linfen: Shanxi Normal University, 2019.
    [40]
    李海平, 李灵芝, 任彩文, 等. 温度、光照对苦荞麦种子萌发、幼苗产量及品质的影响[J]. 西南师范大学学报(自然科学版),2009,34(5):158−161. [LI H P, LI L Z, REN C E, et al. Effects of temperature and light on seed germination, seedling yield and quality of tartary buckwheat[J]. Journal of Southwest China Normal University (Natural Science Edition),2009,34(5):158−161. doi: 10.13718/j.cnki.xsxb.2009.05.031

    LI H P, LI L Z, REN C E, et al. Effects of temperature and light on seed germination, seedling yield and quality of tartary buckwheat[J]. Journal of Southwest China Normal University (Natural Science Edition), 2009, 34(5): 158-161. doi: 10.13718/j.cnki.xsxb.2009.05.031
    [41]
    胡洁. 藜麦萌发过程中营养物质变化规律及藜麦芽饮料研制[D]. 太原: 山西大学, 2017

    HU J. Nutrients change rules during germination of quinoa andquinoa malt beverage development[D]. Taiyuan: Shanxi University, 2017.
    [42]
    魏志敏, 和剑涵, 裴美燕, 等. 特色蔬菜之藜麦苗[J]. 蔬菜,2020(4):62−64. [WEI Z M, HE J H, PEI M Y, et al. Characteristic vegetable-quinoa seedling[J]. Vegetables,2020(4):62−64.

    WEI Z M, HE J H, PEI M Y, et al. Characteristic vegetable-quinoa seedling[J]. Vegetables, 2020(4): 62-64.
    [43]
    黄碧光, 刘思衡. 麦苗的营养保健价值及其开发利用[J]. 食品研究与开发,2001,22(5):40−42. [HUANG B G, LIU S H. Nutritional and health value of wheat seedlings and its development and utilization[J]. Food Research and Development,2001,22(5):40−42. doi: 10.3969/j.issn.1005-6521.2001.05.019

    HUANG B G, LIU S H. Nutritional and health value of wheat seedlings and its development and utilization[J]. Food Research and Development, 2001, 22(5): 40-42. doi: 10.3969/j.issn.1005-6521.2001.05.019
    [44]
    曾亚文, 杨涛, 普晓英, 等. 大麦籽粒中γ-氨基丁酸、总黄酮和生物碱含量在发芽过程中的变化[J]. 麦类作物学报,2012,32(1):135−139. [ZENG Y W, YANG T, XIAO-YING P U, et al. Transformation of γ-aminobutyric acid and total flavones and alkaloids content in barley grains during germination process[J]. Journal of Triticeae Crops,2012,32(1):135−139. doi: 10.7606/j.issn.1009-1041.2012.01.25

    ZENG Y W, YANG T, XIAO-YING P U, et al. Transformation of γ-aminobutyric acid and total flavones and alkaloids content in barley grains during germination process[J]. Journal of Triticeae Crops, 2012, 32(1): 135-139. doi: 10.7606/j.issn.1009-1041.2012.01.25
    [45]
    朱秀敏, 王彩君, 王建军. 几种芽菜维生素C含量的比较研究[J]. 北方园艺,2012(3):35−37. [ZHU X M, WANG C J, WANG J J. Comparative study on vitamin C content of several sprouts[J]. Northern Horticulture,2012(3):35−37.

    ZHU X M, WANG C J, WANG J J. Comparative study on vitamin C content of several sprouts[J]. Northern Horticulture, 2012(3): 35-37.
    [46]
    曹菲菲, 王彦杰, 甄润英. 不同温度下绿豆萌发速度和主要成分的变化研究[J]. 食品研究与开发,2018,39(16):50−54. [CAO F F, WANG Y J, ZHEN R Y. Study on mung bean germination rate and main composition change under different temperature[J]. Food Research and Development,2018,39(16):50−54. doi: 10.3969/j.issn.1005-6521.2018.16.010

    CAO F F, WANG Y J, ZHEN R Y. Study on mung bean germination rate and main composition change under different temperature[J]. Food Research and Development, 2018, 39(16): 50-54. doi: 10.3969/j.issn.1005-6521.2018.16.010
    [47]
    李琼. 芸豆不同发芽阶段生物类黄酮对DPPH自由基的清除效率研究[J]. 安徽农业科学,2011,39(20):12072−12074. [LI Q. Study of scavenging activities on DPPH free radical by bioflavonoid of kidney beans at different germination periods[J]. Journal of Anhui Agricultural Sciences,2011,39(20):12072−12074. doi: 10.3969/j.issn.0517-6611.2011.20.035

    LI Q. Study of scavenging activities on DPPH free radical by bioflavonoid of kidney beans at different germination periods[J]. Journal of Anhui Agricultural Sciences, 2011, 39(20): 12072-12074. doi: 10.3969/j.issn.0517-6611.2011.20.035
    [48]
    张欢. 光环境调控对植物生长发育的影响[D]. 南京: 南京农业大学, 2010

    ZHANG H. Effect of light environment control on the growth and development in plant[D]. Nanjing: Nanjing Agricultural University, 2010.
    [49]
    黄枝, 王美娟, 林碧英. LED光质对豌豆芽苗菜产量及品质的影响[J]. 亚热带农业研究,2015,11(2):90−94. [HUANG Z, WANG M J, LIN B Y. Effects of LED light quality on the yield and quality of Pisum sativum sprouts[J]. Subtropical Agriculture Research,2015,11(2):90−94. doi: 10.13321/j.cnki.subtrop.agric.res.2015.02.004

    HUANG Z, WANG M J, LIN B Y. Effects of LED light quality on the yield and quality of Pisum sativum sprouts[J]. Subtropical Agriculture Research, 2015, 11(2): 90-94. doi: 10.13321/j.cnki.subtrop.agric.res.2015.02.004
    [50]
    耿灵灵, 陈华涛, 李群三, 等. LED红蓝复合光对豌豆芽苗菜产量和营养品质的影响[J]. 福建农业学报,2017,32(10):1091−1095. [GENG L L, CHEN H T, QUN-SAN L I, et al. Effects of LED light exposure on yield and nutritional quality of pea sprouts[J]. Fujian Journal of Agricultural Sciences,2017,32(10):1091−1095. doi: 10.19303/j.issn.1008-0384.2017.10.009

    GENG L L, CHEN H T, QUN-SAN L I, et al. Effects of LED light exposure on yield and nutritional quality of pea sprouts[J]. Fujian Journal of Agricultural Sciences, 2017, 32(10): 1091-1095. doi: 10.19303/j.issn.1008-0384.2017.10.009
    [51]
    管康林. 种子生理生态学[M]. 北京: 中国农业出版社, 2009

    GUAN K L. Seed physiology and ecology[M]. Beijing: China Agricultural Press, 2009.
    [52]
    BALASUNDRAM N, SUNDRAM K, SAMMAN S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses[J]. Food Chemistry,2006,99(1):191−203. doi: 10.1016/j.foodchem.2005.07.042
    [53]
    GARZO´N A G, DRAGO S R. Free α-amino acids, γ-aminobutyric acid (GABA), phenolic compounds and their relationships with antioxidant properties of sorghum malted in different conditions[J]. Journal of Food Science and Technology,2018,55(8):3188−3198. doi: 10.1007/s13197-018-3249-0
    [54]
    TI H, ZHANG R, ZHANG M, et al. Dynamic changes in the free and bound phenolic compounds andantioxidant activity of brown rice at different germination stages[J]. Food Chemistry,2014,161:337−344. doi: 10.1016/j.foodchem.2014.04.024
    [55]
    KIMA S, ZAIDUL I, MAEDA T, et al. A time-course study of flavonoids in the sprouts of tartary (Fagopyrum tataricum Gaertn.) buckwheats[J]. Scientia Horticulturae,2007,115(1):13−18. doi: 10.1016/j.scienta.2007.07.018
    [56]
    HIDALGO A, ŠAPONJAC V T, ĆETKOVIĆ G, et al. Antioxidant properties and heat damage of water biscuits enriched withsprouted wheat and barley[J]. LWT-Food Science and Technology,2019:114.
    [57]
    王颖, 佐兆杭, 王欣卉, 等. 芸豆芽菜多酚对氧化损伤小鼠体内抗氧化及肝脏损伤修复作用[J]. 食品科学,2017,38(21):212−216. [WANG Y, ZUO Z H, WANG X H, et al. Effects of kidney bean sprout polyphenols on restoring antioxidant system and oxidative liver injury in mice[J]. Food Science,2017,38(21):212−216. doi: 10.7506/spkx1002-6630-201721034

    WANG Y, ZUO Z H, WANG X H, et al. Effects of kidney bean sprout polyphenols on restoring antioxidant system and oxidative liver injury in mice[J]. Food Science, 2017, 38(21): 212-216. doi: 10.7506/spkx1002-6630-201721034
    [58]
    孙国娟, 徐红艳, 崔泰花, 等. 荞麦芽功能性成分研究综述[J]. 食品科学,2012(8):348−349,352. [SUN G J, XU H Y, CUI T H, et al. Research review on the functional composition of buckwheat sprouts[J]. Modern Agricultural Science and Technology,2012(8):348−349,352.

    SUN G J, XU H Y, CUI T H, et al. Research review on the functional composition of buckwheat sprouts[J]. Modern Agricultural Science and Technology, 2012(8): 348-349, 352.
    [59]
    KIM S J, ZAIDUL I S M, SUZUKI T, et al. Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts[J]. Food Chemistry,2008,110(4):814−820. doi: 10.1016/j.foodchem.2008.02.050
    [60]
    吕兵兵, 姚攀锋, 王官凤, 等. 光周期对苦荞芽菜生长与品质的影响[J]. 西北植物学报,2019,39(10):1785−1794. [LÜ B B, YAO P F, WANG G, et al. Effect of photoperiod on growth and quality of tartary buckwheat sprouts[J]. Acta Botanica Boreali-Occidentalia Sinica,2019,39(10):1785−1794.

    LÜ B B, YAO P F, WANG G, et al. Effect of photoperiod on growth and quality of tartary buckwheat sprouts[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(10): 1785-1794.
    [61]
    李丽, 李驰荣, 任晗堃, 等. 赤小豆萌芽过程中抗氧化活性及多酚类成分变化分析[J]. 食品工业,2015,36(12):208−211. [LI L, LI C R, REN H K, et al. Changing of antioxidant activity and active polyphenols in the sprouting process of the rice bean[J]. Food Industry,2015,36(12):208−211.

    LI L, LI C R, REN H K, et al. Changing of antioxidant activity and active polyphenols in the sprouting process of the rice bean[J]. Food Industry, 2015, 36(12): 208-211.
    [62]
    GUO X, LI T, TANG K, et al. Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata)[J]. Journal of Agricultural & Food Chemistry,2012,60(44):11050.
    [63]
    PRADEEP S, GUHA M. Effect of processing methods on the nutraceutical and antioxidant properties[J]. Food Chemistry,2011,126(4):1643−1647. doi: 10.1016/j.foodchem.2010.12.047
    [64]
    郑璐, 王兴国, 韩飞, 等. 发芽对糜子酚类化合物及抗氧化活性的影响[J]. 食品工业科技,2015,36(16):124−128,132. [ZHENG L, WANG X G, HAN F, et al. Effect of germination on phenolics and antioxidant activity of proso millet[J]. Science and Technology of Food Industry,2015,36(16):124−128,132.

    ZHENG L, WANG X G, HAN F, et al. Effect of germination on phenolics and antioxidant activity of proso millet[J]. Science and Technology of Food Industry, 2015, 36(16): 124-128, 132.
    [65]
    乞素冬. Resistin与肥胖性2型糖尿病恒河猴模型相关性及其参与病理发生的分子机制研究[D]. 北京: 北京协和医学院, 2015

    QI S D. The correlation and molecular mechanisms of pathogenesis of resistin in obese type 2 diabetes rhesus monkey models[D]. Beijing: Peking Union Medical College, 2015.
    [66]
    YANG N, REN G. Determination ofd-chiro-inositol in tartary buckwheat using high-performance liquid chromatography with an evaporative light-scattering detector[J]. Crossref,2008,56(3):757−760.
    [67]
    WANG L, LI X, NIU M, et al. Effect of additives on flavonoids, d - chiro -inositol and trypsin inhibitor during the germination of tartary buckwheat seeds[J]. Crossref,2013,58(2):348−354.
    [68]
    JIA C, HU W, CHANG Z, et al. Acid α-galactosidase is involved in D-chiro-inositol accumulation during tartary buckwheat germination[J]. Polish Botanical Society,2015:53−58.
    [69]
    宋雨, 邹亮, 赵江林, 等. 苦荞萌发过程中D-手性肌醇含量变化的探究[J]. 食品科技,2016,41(2):80−83. [SONG Y, ZOU L, ZHAO J L, et al. The change of D-chiro inositol content in tartary buckwheat during germination process[J]. Food Science and Technology,2016,41(2):80−83. doi: 10.13684/j.cnki.spkj.2016.02.015

    SONG Y, ZOU L, ZHAO J L, et al. The change of D-chiro inositol content in tartary buckwheat during germination process[J]. Food Science and Technology, 2016, 41(2): 80-83. doi: 10.13684/j.cnki.spkj.2016.02.015
    [70]
    卢丞文. 荞麦中D-手性肌醇分离提取与纯化研究[D]. 长春: 吉林农业大学, 2007

    LU C W. Extraction and purification research of D-chiro-inositol from buckwheat[D]. Changchun: Jilin Agricultural University, 2007.
    [71]
    石磊, 刘超, 周柏玲, 等. 萌发条件对绿豆芽中_氨基丁酸含量的影响研究[J]. 粮食与油脂,2019,32(3):50−53. [SHI L, LIU C, ZHOU B L, et al. Effects of germination conditions on the content of γ-aminobutyric acid in mung bean sprouts[J]. Cereals & Oils,2019,32(3):50−53.

    SHI L, LIU C, ZHOU B L, et al. Effects of germination conditions on the content of γ-aminobutyric acid in mung bean sprouts[J]. Cereals & Oils, 2019, 32(3): 50-53.
    [72]
    ZHANG Q, XIANG J, ZHANG L Z, et al. Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice[J]. Journal of Functional Foods,2014,10:283−291. doi: 10.1016/j.jff.2014.06.009
    [73]
    SHARMA S, SAXENA D C, RIAR C S. Isolation of functional components β-glucan and γ-aminobutyric acid from raw and germinated barnyard millet (Echinochloa frumentaceae) and their characterization[J]. Plant Foods for Human Nutrition,2016,71(3):231−238. doi: 10.1007/s11130-016-0545-6
    [74]
    OH S, CHOI W G. Changes in the levels of 7-aminobutyric acid and glutamate decarboxylase in developing soybean seedlings[J]. Journal of Plant Research,2001,114(3):309. doi: 10.1007/PL00013992
    [75]
    霍怡然. 芽菜复合果蔬汁的制作及其减肥功效[D]. 沈阳: 沈阳农业大学, 2020

    HUO Y R. Preparation of sprout compound fruit and vegetable juice andits weight-loss effect[D]. Shenyang: Shenyang Agricultural University, 2020.
    [76]
    MCCOY R G, HOUTEN H K V, ZIEGENFUSS J Y, et al. Increased mortality of patients with diabetes reporting severe hypoglycemia[J]. Diabetes Care,2012,35(9):1897. doi: 10.2337/dc11-2054
    [77]
    CONSTANTINO M I, MOLYNEAUX L, LIMACHER-GISLER F, et al. Long-term complications and mortality in young-onset diabetes[J]. DIABETES CARE,2013,36(12):3863−3869. doi: 10.2337/dc12-2455
    [78]
    CHENG A Y, FANTUS I G. Oral antihyperglycemic therapy for type 2 diabetesmellitus[J]. Canadian Medical Association or Its Licensors,2005,172(2):213−226. doi: 10.1503/cmaj.1031414
    [79]
    PENG C C, CHEN K C, YANG Y L, et al. Aqua-culture improved buckwheat sproutswith more abundant precious nutrients and hypolipidemic activity[J]. International Journal of Food Sciences and Nutrition,2009,60(S1):232−245.
    [80]
    LEE D G, JANG I S, YANG K E, et al. Effect of rutin from tartary buckwheat sprout on serum glucose-lowering in animal model of type 2 diabetes[J]. Acta Pharmaceutica,2016,66(2):297−302. doi: 10.1515/acph-2016-0021
    [81]
    WATANABE M, AYUGASE J. Effects of buckwheat sprouts on plasma and hepatic parameters in type 2 diabetic db/db mice[J]. Journal of Food Science,2010,75(9):294−299. doi: 10.1111/j.1750-3841.2010.01853.x
    [82]
    MOHAMED R S, MARREZ D A, SALEM S H, et al. Hypoglycemic, hypolipidemic and antioxidant effects of greensprouts juice and functional dairy micronutrients against streptozotocin-inducedoxidative stress and diabetesin rats[J]. Heliyon, 2019, 5(2).
    [83]
    NAKAMURA K, NARAMOTO K, KOYAMA M. Blood-pressure-lowering effect of fermented buckwheatsprouts in spontaneously hypertensive rats[J]. Journal of Functional Foods,2013,5(1):406−415. doi: 10.1016/j.jff.2012.11.013
    [84]
    MERENDINO N, MOLINARI R, COSTANTINI L, et al. A new “functional” pasta containing tartarybuckwheat sprouts as an ingredient improvesthe oxidative status and normalizes someblood pressure parameters in spontaneouslyhypertensive rats[J]. Food & Function,2014(5):1017−1026.
    [85]
    CHOI H D, KIM Y S, CHOI I W, et al. Anti-obesity and cholesterol-lowering effects of germinated brown rice in rats fed with high fat and cholesterol diets[J]. Korean Journal of Food Science and Technology,2006,38(5):674−678.
    [86]
    王玲平, 周生茂, 戴丹丽, 等. 植物酚类物质研究进展[J]. 浙江农业学报,2010,22(5):696−701. [WANG L P, ZHOU S M, DAI D L, et al. Progress in plant phenolic compounds[J]. Actr Agricultume Zhejiangensis,2010,22(5):696−701. doi: 10.3969/j.issn.1004-1524.2010.05.030

    WANG L P, ZHOU S M, DAI D L, et al. Progress in plant phenolic compounds[J]. Actr Agricultume Zhejiangensis, 2010, 22(5): 696-701. doi: 10.3969/j.issn.1004-1524.2010.05.030
    [87]
    CÁCERES P J, VILLALUENGA C M, AMIGO L, et al. Maximising the phytochemical content and antioxidant activity of ecuadorian brown rice sprouts through optimal germinationconditions[J]. Food Chemistry,2014,152:407−414. doi: 10.1016/j.foodchem.2013.11.156
    [88]
    HIDALGO A, FERRARETTO A, NONI I D, et al. Bioactive compounds and antioxidant properties of pseudocereals-enriched water biscuits and their in vitro digestates[J]. Food Chemistry,2017,240:799−807.
    [89]
    白永亮, 凌志洲, 陈甜妹, 等. 青稞种子萌动过程中抗氧化活性的变化[J]. 广东农业科学,2019,46(11):119−126. [BAI Y L, LING Z Z, CHEN T M, et al. Changes in antioxidant activity of highlandbarley seeds during germination[J]. Guangdong Agricultural Sciences,2019,46(11):119−126.

    BAI Y L, LING Z Z, CHEN T M, et al. Changes in antioxidant activity of highlandbarley seeds during germination[J]. Guangdong Agricultural Sciences, 2019, 46(11): 119-126.
    [90]
    王雪. 发芽藜麦汁饮料的研制及其抗氧化功能研究[D]. 长春: 吉林农业大学, 2018

    WANG X. Research on the germinated quinoa juice beverage and Its antioxidant function[D]. Changchun: Jilin Agricultural University, 2018.
    [91]
    张淑杰, 姜宏伟, 康玉凡. 豌豆芽菜多糖超声辅助提取优化及抗氧化研究[J]. 食品科技,2019,44(10):217−223. [ZHANG S J, JIANG H W, KANG Y F. Optimization of ultrasonic-assisted extraction and antioxidant activity of polysaccharide from pea sprouts[J]. Food Science and Technology,2019,44(10):217−223.

    ZHANG S J, JIANG H W, KANG Y F. Optimization of ultrasonic-assisted extraction and antioxidant activity of polysaccharide from pea sprouts[J]. Food Science and Technology, 2019, 44(10): 217-223.
    [92]
    APEL K, HIRT H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology,2013,55(1):373−399.
    [93]
    NAM T G, LIM T, LEE B H, et al. Comparison of anti-inflammatory effects of flavonoid-rich common and tartary buckwheat sprout extracts in lipopolysaccharide-stimulated RAW 264.7 and peritoneal macrophages[J]. Oxidative Medicine & Cellular Longevity,2017,2017:1−12.
    [94]
    IMAM M U, ISHAK A, OOI D J, et al. Germinated brown rice regulates hepaticcholesterol metabolism and cardiovasculardisease risk in hypercholesterolaemic rats[J]. Journal of Functional Foods,2014,8:193−203. doi: 10.1016/j.jff.2014.03.013
    [95]
    SAKAMOTO S, HAYASHI T, HAYASHI K. Pre-germinated brown rice could enhancematernal mental health and immunityduring lactation[J]. European Journal of Nutrition,2007,46(7):391−396. doi: 10.1007/s00394-007-0678-3
    [96]
    GIMéNEZ-BASTIDA J A, LAPARRA-LLOPIS J M, ZIELINSKI N B H. Buckwheat and buckwheat enriched productsexert an anti-inflammatory effect on themyofibroblasts of colon CCD-18Co[J]. Food & Function,2018,9:3387−3397.
    [97]
    MAMIYA T, KISE M, MORIKAWA K. Effects of pre-germinated brown rice on depression-like behavior in mice[J]. Pharmacology Biochemistry & Behavior,2007,86(1):62−67.
    [98]
    陈振, 康玉凡. 豆类种子及萌发过程中功效性成分研究概述[J]. 中国食物与营养,2012,18(10):27−32. [CHEN Z, KANG Y F. Summary of studies on the functional components of legume seeds and during germination[J]. Food and Nutrition in China,2012,18(10):27−32. doi: 10.3969/j.issn.1006-9577.2012.10.008

    CHEN Z, KANG Y F. Summary of studies on the functional components of legume seeds and during germination[J]. Food and Nutrition in China, 2012, 18(10): 27-32. doi: 10.3969/j.issn.1006-9577.2012.10.008
    [99]
    冯婷. 鹰嘴豆营养保健价值及其应用[J]. 中国食物与营养,2011,17(1):67−69. [FENG T. Nutritional and health value of chickpea and its application[J]. Food and Nutrition in China,2011,17(1):67−69. doi: 10.3969/j.issn.1006-9577.2011.01.018

    FENG T. Nutritional and health value of chickpea and its application[J]. Food and Nutrition in China, 2011, 17(1): 67-69. doi: 10.3969/j.issn.1006-9577.2011.01.018
    [100]
    陈亚云, 康玉凡. LED在芽苗菜生产中的应用及前景展望[J]. 中国食物与营养,2016,22(8):35−39. [CHEN Y Y, KANG Y F. Application and prospect of LED in sprout production[J]. Food and Nutrition in China,2016,22(8):35−39. doi: 10.3969/j.issn.1006-9577.2016.08.009

    CHEN Y Y, KANG Y F. Application and prospect of LED in sprout production[J]. Food and Nutrition in China, 2016, 22(8): 35-39. doi: 10.3969/j.issn.1006-9577.2016.08.009
    [101]
    PENG L X, ZOU L, SU Y M, et al. Effects of light on growth, levels of anthocyanin, concentration ofmetabolites in Fagopyrum tataricum sprout cultures[J]. International Journal of Food Science and Technology,2015,50:1382−1389. doi: 10.1111/ijfs.12780
    [102]
    JI H B, TANG W, ZHOU X L, et al. Combined effects of blue and ultraviolet lights on the accumulation of flavonoids in tartary buckwheat sprouts[J]. Polish Journal of Food & Nutrition Sciences,2016,66(2):93−98.
    [103]
    LIU H K, CHEN Y Y, HU T T, et al. The influence of light-emitting diodes on thephenolic compounds and antioxidant activitiesin pea sprouts[J]. Journal of Functional Foods,2016,25:459−465. doi: 10.1016/j.jff.2016.06.028
    [104]
    NAM T G, KIM D, EOM S H. Effects of light sources on major flavonoids and antioxidant activity in common buckwheat sprouts[J]. Food Science and Biotechnology, 2018.
    [105]
    王珺儒, 易倩, 帖青清, 等. 不同光质对苦荞芽黄酮类物质及抗氧化活性的影响[J]. 食品科技,2019,44(5):213−218. [WANG J R, YI Q, TIE Q Q, et al. Effect on flavonoids and antioxidant activity of the bud of tartary buckwheat after treatment of different LED light sources[J]. Food Science and Technology,2019,44(5):213−218.

    WANG J R, YI Q, TIE Q Q, et al. Effect on flavonoids and antioxidant activity of the bud of tartary buckwheat after treatment of different LED light sources[J]. Food Science and Technology, 2019, 44(5): 213-218.
    [106]
    雒晓鹏, 卜星星, 赵海霞, 等. LED光源对芽期苦荞黄酮合成的影响[J]. 食品科学,2015,36(3):86−89. [LUO X P, BU X X, ZHAO H X, et al. Effects of LED lights on the levels of flavonoid during germination of tartary buckwheat[J]. Food Science,2015,36(3):86−89. doi: 10.7506/spkx1002-6630-201503016

    LUO X P, BU X X, ZHAO H X, et al. Effects of LED lights on the levels of flavonoid during germination of tartary buckwheat[J]. Food Science, 2015, 36(3): 86-89. doi: 10.7506/spkx1002-6630-201503016
    [107]
    TUAN P A, THWE A A, KIM Y B, et al. Effects of white, blue, and red light-emitting diodes on carotenoid biosynthetic gene expression levels and carotenoid accumulationin sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.)[J]. Journal of Agricultural and Food Chemistry,2013,61:12356−12361. doi: 10.1021/jf4039937
    [108]
    TSURUNAGA Y, TAKAHASHI T, KATSUBE T, et al. Effects of UV-B irradiation on the levels of anthocyanin, rutin and radicalscavenging activity of buckwheat sprouts[J]. Food Chemistry,2013,141(1):552−556. doi: 10.1016/j.foodchem.2013.03.032
    [109]
    ZHANG Y, ZHENG S, LIU Z, et al. Both HY5 and HYH are necessary regulators for low temperature-inducedanthocyanin accumulation in arabidopsis seedlings[J]. Journal of Plant Physiology,2011,168(4):367−374. doi: 10.1016/j.jplph.2010.07.025
    [110]
    LI S, BAI Y, LI C, et al. Anthocyanins accumulate in tartary buckwheat (Fagopyrumtataricum) sprout in response to cold stress[J]. Acta Physiologiae Plantarum,2015,37(8):1−8.
    [111]
    陈进红, 文平. 温度对荞麦芽菜叶片及籽粒芦丁含量的影响[J]. 浙江大学学报(农业与生命科学版),2005,31(1):59−61. [CHEN J H, WEN P. Effects of temperature on rutin content of seedling, leaf and seed of buckwheat[J]. Journal of Zhejiang University (Agric. & Life Sci. ),2005,31(1):59−61.

    CHEN J H, WEN P. Effects of temperature on rutin content of seedling, leaf and seed of buckwheat[J]. Journal of Zhejiang University (Agric. & Life Sci. ), 2005, 31(1): 59-61.
    [112]
    ZHAO G, ZHAO J L, PENG L X, et al. Effects of yeast polysaccharide on growth and flavonoid accumulation in Fagopyrum tataricum sprout cultures[J]. Molecules,2012,17:11335−11345. doi: 10.3390/molecules171011335
    [113]
    ZHAO J, ZHONG L, ZOU L, et al. Efficient promotion of the sprout growthand rutin production of tartary buckwheatby associated fungal endophytes[J]. Cereal Research Communications,2014,42(3):401−412. doi: 10.1556/CRC.2013.0068
    [114]
    JEONG H, SUNG J, YANG J, et al. Effect of sucrose on the functional composition and antioxidant capacity ofbuckwheat (Fagopyrum esculentum M.) sprouts[J]. Journal of Functional Foods,2018,43:70−76. doi: 10.1016/j.jff.2018.01.019
    [115]
    PARK C H, YEO H J, PARK Y E, et al. Influence of chitosan, salicylic acid and jasmonic acid on phenylpropanoid accumulation in germinated buckwheat (Fagopyrum esculentum Moench)[J]. Foods,2019,8:153. doi: 10.3390/foods8050153
    [116]
    LIM J, PARK K, KIM B, et al. Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout[J]. Food Chemistry,2012,135:1065−1070. doi: 10.1016/j.foodchem.2012.05.068
    [117]
    SIM U, SUNG J, LEE H, et al. Effect of calcium chloride and sucrose on the composition of bioactivecompounds and antioxidant activities in buckwheat sprouts[J]. Food Chemistry,2020,312:126075. doi: 10.1016/j.foodchem.2019.126075
    [118]
    万燕, 向达兵, 曾雪玲, 等. 盐胁迫对苦荞麦芽菜产量及黄酮含量的影响[J]. 食品工业科技,2016(7):328−332. [WAN Y, XIANG D B, ZENG X L, et al. Salt stress influence on yield of tartary buckwheat sprouts and flavonoids content[J]. Science and Technology of Food Industry,2016(7):328−332.

    WAN Y, XIANG D B, ZENG X L, et al. Salt stress influence on yield of tartary buckwheat sprouts and flavonoids content[J]. Science and Technology of Food Industry, 2016(7): 328-332.
    [119]
    MA Y, WANG P, ZHOU T, et al. Role of Ca2+ in phenolic compound metabolismof barley (Hordeum vulgare L.) sprouts under NaCl stress[J]. Journal of the Science of Food and Agriculture,2019,99(11):5176−5186. doi: 10.1002/jsfa.9764
    [120]
    MICHA S. Elicitation with abiotic stresses improves pro-healthconstituents, antioxidant potential and nutritionalquality of lentil sprouts[J]. Saudi Journal of Biological Sciences,2015,22(4):409−416. doi: 10.1016/j.sjbs.2014.12.007
    [121]
    KIM H, PARK K, LIM J. Metabolomic analysis of phenolic compounds in buckwheat (Fagopyrum esculentum M.) sprouts treated with methyl jasmonate[J]. Journal of Agricultural and Food Chemistry,2011,59(10):5707−5713. doi: 10.1021/jf200396k
    [122]
    YANG H J, LIM J H, PARK K J, et al. Methyl jasmolate treated buckwheat sprout powder enhancesglucose metabolism by potentiating hepatic insulin signaling inestrogen-deficient rats[J]. Nutrition,2016,32:129−137. doi: 10.1016/j.nut.2015.07.012
    [123]
    JIA L, TIAN J Y, WEI S J, et al. Hydrogen gas mediates ascorbic acid accumulation and antioxidant system enhancement in soybean sprouts under UV-A irradiation[J]. Scientific Reports,2017,7(1):16366. doi: 10.1038/s41598-017-16021-0
  • Cited by

    Periodical cited type(7)

    1. 郭慧慧,蒋元斌,林丛发,徐绍翔,林泽宇,薛立云. 太子参脱毒苗培养、化学成分及指纹图谱研究进展. 药学研究. 2024(03): 274-281 .
    2. 张森,欧婧,豆晓霞,刘晓东,付本懂. 太子参及提取物对动物免疫调节作用研究进展. 动物医学进展. 2024(05): 97-102 .
    3. 张春雨,邢鹏,周福荣,肖逸豪,赵红兵. 中药复方养肝活血汤对酒精性肝病的临床研究. 中国民族医药杂志. 2024(09): 11-14 .
    4. 倪建成,范永飞,叶祖云. 太子参化学成分、药理作用和应用的研究进展. 中草药. 2023(06): 1963-1977 .
    5. 游绍伟,詹亚梅,王文素,何典城,蓬兴柱,王学勇. 基于“脾虚宛滞”探讨慢性萎缩性胃炎“炎癌转化”与防治思路. 中国实验方剂学杂志. 2023(21): 188-195 .
    6. 文丁苑,梁双敏,国琦,宋晓晓,葛长荣,肖智超. 榆黄菇多糖提取工艺优化及其免疫调节活性评价. 现代食品科技. 2023(10): 233-243 .
    7. 谢雄雄,孟璞岩,朱灵芝,陈宜均,龚斌,李康琴,邓绍勇. 太子参的药理活性、化学成分及繁殖栽培研究进展. 南方林业科学. 2023(05): 60-64+78 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (326) PDF downloads (21) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return