ZHENG Wenqi, MENG Zhenni, LI Hongbo, et al. 3D Printing of Fungus-Chicken Bone Powder Mixed Gel System and Its Texture Modification[J]. Science and Technology of Food Industry, 2022, 43(6): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080232.
Citation: ZHENG Wenqi, MENG Zhenni, LI Hongbo, et al. 3D Printing of Fungus-Chicken Bone Powder Mixed Gel System and Its Texture Modification[J]. Science and Technology of Food Industry, 2022, 43(6): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080232.

3D Printing of Fungus-Chicken Bone Powder Mixed Gel System and Its Texture Modification

More Information
  • Received Date: August 22, 2021
  • Available Online: January 12, 2022
  • In this study, the fungus-chicken bone meal coagulation system was used to manufacture texture adjustment products with attractive shape and rich nutrition using 3D printing technology. Firstly, the effects of different bone powder addition ratios on the rheology and 3D printing characteristics of the coagulation system were studied, and the related mechanisms were discussed through low field nuclear magnetic resonance (LF-NMR) and Fourier transform infrared spectroscopy (FTIR). Results showed that, with the content of chicken bone meal increased, the yield stress, viscosity and storage modulus (G') decreased. When the ratio of chicken bone meal:fungus powder=2:8, the mixed gel system illustrated best 3D printing performance. Subsequently, the internal structure (filling mode and filling ratio) of the printed sample was controlled by 3D printing technology to study its effect on the textural properties. Results indicated that the internal structure significantly (P<0.05) affected the hardness, adhesion, adhesiveness and firmness of the sample. This study could provide useful information for the texture modification of customized 3D printed food.
  • [1]
    GUO C F, ZHANG M, BHANDARIB. Model building and slicing in food 3D printing processes: A review[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(4): 1052-1069.
    [2]
    RUBIO E, HURTADO S. 3D food printing technology at home, domestic application[J]. Fundamentals of 3D Food Printing and Applications,2019:289−329.
    [3]
    LIU Z B, BHANDARI B, PRAKASH S, et al. Creation of internal structure of mashed potato construct by 3D printing and its textural properties[J]. Food Research International (Ottawa, Ont.),2018,111:534−543. doi: 10.1016/j.foodres.2018.05.075
    [4]
    周国华, 于国萍. 黑木耳多糖降血脂作用的研究[J]. 现代食品科技,2005(1):46−48. [ZHOU G H, YU G P, et al. Study on hypolipidemic effect of Auricularia auricularia polysaccharide[J]. Modern Food Science & Technology,2005(1):46−48.
    [5]
    刘雅静. 黑木耳化学成分及药理活性研究[D]. 淄博: 山东轻工业学院, 2011.

    LIU Y J. Studies on the chemical components and pharamacological activities of Auricularia auricular [D]. Zibo: Qilu University of Technology, 2011.
    [6]
    孙畅, 姜明, 段旭彤, 等. 黑木耳的保健和药用价值以及开发前景分析[J]. 科技视界,2013(12):17−18. [SUN Ch, JIANG M, DUAN X T, et al. Summarizing the value of medical and healthth care and development prospect on Auricularia auricular[J]. Science & Technology Vision,2013(12):17−18.
    [7]
    张燕燕, 刘新春, 王雪, 等. 黑木耳营养成分及生物活性研究进展[J]. 南方农业,2018,12(29):130−134. [ZHANG Y Y, LIU X C, WANG X, et al. Advances in studies on nutritional components and biological activities of Auricularia[J]. South China Agriculture,2018,12(29):130−134.
    [8]
    白璧辉, 谢兴文, 李鼎鹏, 等. 骨质疏松症发病因素及其与中医体质相关性研究进展[A]. 中国中西医结合学会骨伤科专业委员会. 2019楚天骨科高峰论坛暨第二十六届中国中西医结合骨伤科学术年会论文集[C]//中国中西医结合学会, 2019: 2.

    BAI B H, XIE X W, LI D P, et al. Research progress on the pathogenesis of osteoporosis and its correlation with TCM constitution [A]. Professional Committee of Orthopedics and Traumatology of Chinese Association of Integrated Traditional and Western Medicine. 2019 Chutian Orthopedics Summit Forum and the 26th Annual Conference of Chinese Integrated Traditional and Western Orthopedics [C]//Professional Committee of Orthopedics and Traumatology of Chinese Association of Integrated Traditional and Western Medicine: Chinese Association of Integrated Traditional and Western Medicine, 2019: 2.
    [9]
    LIU Z B, ZHANG M, BHANDARIB, et al. Impact of rheological properties of mashed potatoes on 3D printing[J]. Journal of Food Engineering,2018,220:76−82. doi: 10.1016/j.jfoodeng.2017.04.017
    [10]
    AHMAD M U, TASHIRO Y, MATSUKAWA S, et al. Gelation mechanism of surimi studied by 1H NMR relaxation measurements[J]. Journal of Food Science,2007,72(6):362−367. doi: 10.1111/j.1750-3841.2007.00411.x
    [11]
    HUNG L, ZHANG M, MUJUMDAR A S, et al. Comparison of four drying methods for re-structured mixed potato with apple chips[J]. Journal of Food Engineering,2011,103(3):279−284. doi: 10.1016/j.jfoodeng.2010.10.025
    [12]
    LIU Z B, BHANDARIB, PRAKASH S, et al. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocoll, 2019, 87: 413–424.
    [13]
    KRISHNARAJ P, ANUKIRUTHIKA T, CHOUDHARY P, et al. 3D extrusion printing and post-processing of fibre-rich snack from indigenous composite flour[J]. Food and Bioprocess Technology, 2019, 12(10): 1776-1786.
    [14]
    刘振彬. 马铃薯泥及其淀粉混合凝胶体系的挤出型3D打印及后加工适应性研究[D]. 无锡: 江南大学, 2020.

    LIU Z B. Study on extrusion 3D printing and post-processing adaptability of mashed potato and its starchmixed gel system[D]. Wuxi: Jiangnan University, 2020.
    [15]
    DICK A, BHANDARI B, PRAKASH S. Printability and textural assessment of modified-texture cooked beef pastes for dysphagia patients[J]. Future Foods, 2021, 3,100006.
    [16]
    REZENDE R A, BáRTOLO P J, MENDES A, et al. Rheological behavior of alginate solutions for biomanufacturing[J]. Journal of Applied Polymer Science, 2009, 113(6): 3866−3871.
    [17]
    SWEENEY M, CAMPBELL L L, HANSON J, et al. Characterizing the feasibility of processing wet granular materials to improve rheology for 3D printing[J]. Journal of Materials Science, 2017, 52(22): 13040–13053.
    [18]
    PAXTON N, SMOLAN W, BöCK T, et al. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability[J]. Biofabrication, 2017, 9(4): 044107.
    [19]
    WILSON S A, CROSS L M, PEAK C W, et al. Shear-thinning and thermo-reversible nanoengineered inks for 3D bioprinting[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43449–43458.
    [20]
    LIU Z B, ZHANG M, YE Y F. Indirect prediction of 3D printability of mashed potatoes based on LF-NMR measurements[J]. Journal of Food Engineering,2020:287.
    [21]
    SHAO Y, CHAUSSY D, GROSSEAU P, et al. Use of microfibrillated cellulose/lignosulfonate blends as Carbon precursors: Impact of hydrogel rheology on 3D printing[J]. Industrial & Engineering Chemistry Research,2015,54(43):10575−10582.
    [22]
    ZHANG M, VORA A, HAN W, et al. Dual-responsive hydrogels for direct-write 3D printing[J]. Macromolecules,2015,48(18):6482−6488. doi: 10.1021/acs.macromol.5b01550
    [23]
    ÁLVAREZ-CASTILLO E, OLIVEIRA S, BENGOECHEA C, et al. A rheological approach to 3D printing of plasma protein based doughs[J]. Journal of Food Engineering,2021:288.
    [24]
    GUO C F, ZHANG M, SAKAMON D. 3D extrusion-based printability evaluation of selected cereal grains by computational fluid dynamic simulation[J]. Journal of Food Engineering,2020:286.
    [25]
    AZAM R, ZHANG M, BHANDARI B, et al. Effect of different gums on features of 3D printed object based on vitamin-D enriched orange concentrate[J]. Food Biophysics,2018,13:250−262. doi: 10.1007/s11483-018-9531-x
    [26]
    ASSIFAOUI A, CHAMPION D, CHIOTELLI E, et al. Characterization of water mobility in biscuit dough using a low-field 1H NMR technique[J]. Carbohydrate Polymers,2006,64(2):197−204. doi: 10.1016/j.carbpol.2005.11.020
    [27]
    SHALVIRI A, LIU Q, ABDEKHODAIE M J. et al. Novel modified starch-xanthan gum hydrogels for controlled drug delivery: Synthesis and characterization[J]. Carbohydrate Polymers,2009,79(4):898−907.
    [28]
    LIU Z B, ZHANG M, BHANDARI B, et al. 3D printing: Printing precision and application in food sector[J]. Trends in Food Science & Technology,2017,69:83−94.
    [29]
    AL-MUSLIMAWI A, TAMADDON-JAHROMI HR, WEBSTER M F. Simulation of viscoelastic and viscoelastoplastic die-swell flows[J]. Journal of Non-Newtonian Fluid Mechanics,2013,191:45−56. doi: 10.1016/j.jnnfm.2012.08.004
    [30]
    SEVERINI C, AZZOLLINI D, ALBENZIO M, et al. On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects[J]. Food Research International (Ottawa, Ont. ),2018,106:66−676.
  • Cited by

    Periodical cited type(13)

    1. 成圆,王宇加,王婷婷,丁淼,樊梓鸾. 几种典型天然甜味剂的功能活性及食品加工应用. 现代食品科技. 2023(08): 326-333 .
    2. 安悦嘉,曹雪妍,杨梅,陶冬冰,张旋,张琦,潘松,岳喜庆. pH值对酪蛋白-木糖醇复合物功能和结构特性的影响. 农产品加工. 2023(15): 24-28 .
    3. 陈鑫,赵抒娜,王晨,孟庆佳,陈然,王黎明. 新型复配食糖对小鼠血糖影响的研究. 中国糖料. 2023(04): 81-87 .
    4. 高飞,李艳如,杨畅,季慧苹,李洪亮. 甜味物质应用进展及风险评价. 农产品加工. 2022(01): 57-61 .
    5. 任敏,李志国,闫清泉,边燕飞,司阔林,宗学醒. 基于响应面法优化无糖益生菌牛奶片配方. 食品工业. 2022(02): 79-83 .
    6. 邢耿佳,黄仪友,张黎,陈强,张旭光. 质量源于设计理念在维生素E咀嚼片开发中的应用. 食品工业. 2022(05): 120-124 .
    7. 徐杭蓉,马中媛,于鹏. 低糖冰淇淋的研究进展. 食品工业. 2021(06): 366-367 .
    8. 高蕾蕾,刘峰,栾庆民,贾慧慧,熊小兰,裴疆森,张倩,李克文. 赤藓糖醇生产与应用研究进展. 精细与专用化学品. 2020(03): 1-4 .
    9. 计红芳,李莎莎,张令文,王雪菲,陈复生,马汉军. 豌豆蛋白对猪肉盐溶蛋白理化性质的影响. 食品工业科技. 2019(08): 31-36 . 本站查看
    10. 计红芳,李莎莎,王雪菲,张令文,陈复生,马汉军. 豌豆蛋白对牛肉盐溶蛋白理化性质及二级结构的影响. 食品与发酵工业. 2019(07): 109-115 .
    11. 计红芳,李莎莎,张令文,王雪菲,陈复生,马汉军. 豌豆蛋白对牛肉盐溶蛋白共混凝胶特性的影响. 食品与发酵工业. 2019(09): 89-95 .
    12. 计红芳,李莎莎,张令文,王雪菲,陈复生,马汉军. 豌豆蛋白的添加对猪肉盐溶蛋白凝胶特性的影响. 食品工业科技. 2019(14): 31-36+41 . 本站查看
    13. 李俊霖,郭传庄,王松江,王建彬,隋松森. 赤藓糖醇的特性及其应用研究进展. 中国食品添加剂. 2019(10): 169-172 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (145) PDF downloads (21) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return