LI Shuai, ZHAO Yanyan, ZENG Yingnan, et al. Effect of Low-temperature Plasma Pretreatment on Hot-air with Thin-layer Drying Characteristics of Potatos[J]. Science and Technology of Food Industry, 2022, 43(9): 87−92. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080161.
Citation: LI Shuai, ZHAO Yanyan, ZENG Yingnan, et al. Effect of Low-temperature Plasma Pretreatment on Hot-air with Thin-layer Drying Characteristics of Potatos[J]. Science and Technology of Food Industry, 2022, 43(9): 87−92. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080161.

Effect of Low-temperature Plasma Pretreatment on Hot-air with Thin-layer Drying Characteristics of Potatos

More Information
  • Received Date: August 15, 2021
  • Accepted Date: February 21, 2022
  • Available Online: February 27, 2022
  • In order to achieve the efficient drying of potatoes, shorten the drying time and improve the drying efficiency. In this study, low-temperature plasma technology was used to pretreat potatos for hot-air with thin-layer drying experiment. Study on different plasma pretreatment time (20, 30, 40, 50, 60 s), plasma pretreatment power (100, 200, 300, 400, 500 W) and drying temperature (50, 70, 90 ℃) conditions of drying characteristics, and compared it with unpretreated potatoes. The research results showed that plasma pretreatment could effectively accelerate the drying rate and shorten the drying time.The effective moisture diffusivity was in the range of 3.785×10−11~11.868×10−11 m2/s. After pretreatment power of 500 W for 30 s at 70 ℃, drying time was shortened by a maximum of 35.71%, compared with the control group. This research put forward new ideas for the research of potato hot-air drying pretreatment methods, discussed the application of plasma technology in new fields, and provided new reference and theoretical basis for the research of potato high-efficiency drying pretreatment technology.
  • [1]
    张立菲. 黑龙江省马铃薯产业发展研究[D]. 北京: 中国农业科学院, 2013.

    ZHANG L F. Research on the development of potato industry in Heilongjiang Province[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.
    [2]
    尹慧敏, 聂宇燕, 沈瑾, 等. 基于Weibull分布函数的马铃薯丁薄层热风干燥特性[J]. 农业工程学报,2016,32(17):252−258. [YIN H M, NIE Y Y, SHEN J, et al. Thin-layer hot air drying characteristics of potato diced based on Weibull distribution function[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(17):252−258. doi: 10.11975/j.issn.1002-6819.2016.17.033
    [3]
    闫晨苗, 王玺, 段盛林, 等. 不同干燥方式对马铃薯全粉糊化特性、风味及薯粉面包品质的影响[J]. 食品工业科技,2020,41(9):34−41. [YAN C M, WANG X, DUAN S L, et al. Effects of different drying methods on the gelatinization characteristics and flavor of potato flour and the quality of potato flour bread[J]. Food Industry Science and Technology,2020,41(9):34−41.
    [4]
    董鹏飞. 粮食红外低温真空干燥实验研究[D]. 天津: 天津科技大学, 2012.

    DONG P F. Experimental research on infrared low-temperature vacuum drying of grain[D]. Tianjin: Tianjin University of Science and Technology, 2012.
    [5]
    于辅超. 玉米真空薄层干燥工艺的研究[D]. 长春: 吉林大学, 2006.

    YV F C. Research on the vacuum thin layer drying technology of corn[D]. Changchun: Jilin University, 2006.
    [6]
    潘永康, 王喜忠, 刘相东. 现代干燥技术[M]. 北京: 化学工业出版社, 1998.

    PAN Y K, WANG X Z, LIU X D. Modern drying technology[M]. Beijing: Chemical Industry Press, 1998.
    [7]
    徐晚秀. 食品热风微波耦合干燥及气味控制研究[D]. 无锡: 江南大学, 2018.

    XU W X. Research on food hot-air microwave coupled drying and odor control[D]. Wuxi: Jiangnan University, 2018.
    [8]
    WANG J, LAW C L, NEMA P K, et al. Pulsed vacuum drying enhances drying kinetics and quality of lemon slices[J]. Journal of Food Engineering,2018,224:129−138. doi: 10.1016/j.jfoodeng.2018.01.002
    [9]
    MÍNGUEZ-MOSQUERA M I, JARÉN-GALÁN M, GARRIDO-FERNÁNDEZ J. Competition between the processes of biosynthesis and degradation of carotenoids during the drying of peppers[J]. Journal of Agricultural and Food Chemistry,1994,42(3):645−648. doi: 10.1021/jf00039a008
    [10]
    DHAYAL M, LEE S Y, PARK S U. Using low-pressure plasma for Carthamus tinctorium L. seed surface modification[J]. Vacuum,2006,80(5):499−506. doi: 10.1016/j.vacuum.2005.06.008
    [11]
    HEBBAR H U, VISHWANATHAN K H, RAMESH M N. Development of combined infrared and hot air dryer for vegetables[J]. Journal of Food Engineering,2004,65(4):557−563. doi: 10.1016/j.jfoodeng.2004.02.020
    [12]
    林浩凡. 低温等离子体薄膜沉积对环氧树脂表面电特性影响的研究[D]. 北京: 华北电力大学, 2018.

    LIN H F. Research on the influence of low-temperature plasma film deposition on the electrical properties of epoxy resin surface[D]. Beijing: North China Electric Power University, 2018.
    [13]
    BORMASHENKO E, GRYNYOV R, BORMASHENKO Y, et al. Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds[J]. Scientific Reports,2012,2:741. doi: 10.1038/srep00741
    [14]
    BORMASHENKO E, SHAPIRA Y, GRYNYOV R, et al. Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris)[J]. Journal of Experimental Botany,2015,66(13):4013−4021. doi: 10.1093/jxb/erv206
    [15]
    SERA B, SPATENKA P, SERY M, et al. Influence of plasma treatment on wheat and oat germination and early growth[J]. IEEE Transactions on Plasma Science,2010,38(10):2963−2968. doi: 10.1109/TPS.2010.2060728
    [16]
    童家赟. 空气等离子体预处理提高穿心莲种子活力的研究[D]. 广州: 广州中医药大学, 2012.

    TONG J Y. Air plasma pretreatment to improve the seed vigor of Andrographis paniculata[D]. Guangzhou: Guangzhou University of Traditional Chinese Medicine, 2012.
    [17]
    ZHANG X L, ZHONG C S, MUJUMDAR A S, et al. Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper (Capsicum annuum L.)[J]. Journal of Food Engineering,2019,241:51−57. doi: 10.1016/j.jfoodeng.2018.08.002
    [18]
    ZHOU Y H, VIDYARTHI S K, ZHONG C S, et al. Cold plasma enhances drying and color, rehydration ratio and polyphenols of wolfberry via microstructure and ultrastructure alteration[J]. LWT-Food Science and Technology,2020,134(4):110173.
    [19]
    SHEN H S, GUO Y, ZHAO J Y, et al. The multi-scale structure and physicochemical properties of mung bean starch modified by ultrasound combined with plasma treatment[J]. International Journal of Biological Macromolecules,2021,191:821−831. doi: 10.1016/j.ijbiomac.2021.09.157
    [20]
    LOUREIRO A, SOUZA F, SANCHES E A, et al. Cold plasma technique as a pretreatment for drying fruits: Evaluation of the excitation frequency on drying process and bioactive compounds[J]. Food Research International,2019,9:1472021.
    [21]
    BAO T, HAO X, SHISHIR M, et al. Cold plasma: An emerging pretreatment technology for the drying of jujube slices[J]. Food Chemistry,2020,337:127783.
    [22]
    中华人民共和国卫生部. GB5009.3—2010 食品中水分的测定[S]. 北京: 中国标准出版社, 2010.

    National Health Commission of the Pople’s Republic of China. GB5009.3—2010 Determination of moisture in food[S]. Beijing: China Standard Press, 2010.
    [23]
    吴文福, 郑先哲, 马中苏. 谷物干燥储藏理论与技术[M]. 长春: 吉林科学技术出版社, 2001.

    WU W F, ZHENG X Z, MA Z S. Theory and technology of grain dry storage[M]. Changchun: Jilin Science and Technology Press, 2001.
    [24]
    ABASI S, MINAEI S, KHOSHTAGHAZA M H. Performance of a recirculating dryer equipped with a desiccant wheel[J]. Drying Technology,2015,34(8):863−870.
    [25]
    张丽丽. 红外干燥蔬菜的试验研究及分析[D]. 北京: 中国农业大学, 2014.

    ZHANG L L. Experimental research and analysis of infrared drying vegetables[D]. Beijing: China Agricultural University, 2014.
    [26]
    李兴军, 任强, 张来林, 等. 重量法研究大豆水分吸附速率和有效扩散系数[J]. 食品工业科技,2015,36(21):52−59. [LI X J, REN Q, ZHANG L L, et al. Research on soybean water adsorption rate and effective diffusion coefficient by gravimetric method[J]. Food Industry Science and Technology,2015,36(21):52−59.
    [27]
    ABBASI S, MINAEI S, KHOSHTAGHAZA M. Investigation of kinetics and energy consumption of thin layer drying of corn[J]. Journal of Agricultural Machinery,2016,4(1):98−107.
    [28]
    SCHÖSSLER K, JÄGER H, KNORR D. Novel contact ultrasound system for the accelerated freeze-drying of vegetables[J]. Innovative Food Science & Emerging Technologies,2012,16:113−120.
    [29]
    KARATHANOS V T, VILLALOBOS G, SARAVACOS G D. Comparison of two methods of estimation of the effective moisture diffusivity from drying data[J]. Journal of Food Science,1990,55(1):218−223. doi: 10.1111/j.1365-2621.1990.tb06056.x
    [30]
    李帅. 低温等离子体预处理对玉米籽粒干燥动力学及储藏特性的影响[D]. 长春: 吉林大学, 2020.

    LI S. The effect of low-temperature plasma pretreatment on corn kernel drying kinetics and storage characteristics[D]. Changchun: Jilin University, 2020.
    [31]
    BARTZ J A, BRECHT J K. Postharvest physiology and pathology of vegetables[M]. Boca Raton: CRC Press, 2002.
    [32]
    THIRUMDAS R, DESHMUKH R, ANNAPURE U S. Effect of low temperature plasma processing on physicochemical properties and cooking quality of basmati rice[J]. Innovative Food Science & Emerging Technologies,2015,31:83−90.
    [33]
    尹慧敏. 基于主粮化的马铃薯热风干燥工艺与特性研究[D]. 长春: 吉林大学, 2017.

    YIN H M. Research on hot-air drying technology and characteristics of potato based on staple food[D]. Changchun: Jilin University, 2017.
    [34]
    周碧乾. 天麻产地加工与品质特征的研究[D]. 成都: 成都中医药大学, 2018.

    ZHOU B Q. Research on the processing and quality characteristics of gastrodia elata[D]. Chengdu: Chengdu University of Traditional Chinese Medicine, 2018.
    [35]
    LI S, CHEN S S, LIANG Q, et al. Low temperature plasma pretreatment enhances hot-air drying kinetics of corn kernels[J]. Journal of Food Process Engineering,2019,42(6):e13195.
  • Cited by

    Periodical cited type(5)

    1. 李志杰,闫睿思,汪秀娟,胡中海,蔡天赐,甄宗圆. 蛋白添加剂增强肉制品凝胶性研究进展. 食品科学. 2024(07): 348-357 .
    2. 曹潇,郭伟滨,林颖琪,林欣然,黄懿迅,夏文杰,陈旭,陈思谦. 采用流变、质构特性及感官评定快速鉴别蒸煮双皮奶和冲调双皮奶. 食品科技. 2024(12): 45-53 .
    3. 郭英. 菜籽蛋白-黄原胶复合物对乳状液稳定性的影响. 食品科技. 2022(02): 279-282 .
    4. 潘泓杉,马高兴,裴斐,马宁,仲磊,赵立艳,胡秋辉. 金针菇多糖对大豆分离蛋白凝胶的增强作用及其结构表征. 食品科学. 2022(20): 102-108 .
    5. 曲敏,王宇,刘琳琳,吴海波,朱颖,张光,朱秀清. 亲水胶体对植物蛋白凝胶影响的研究进展. 食品安全质量检测学报. 2022(22): 7246-7254 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (226) PDF downloads (22) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return