ZHAO Qiyan, TANG Ning, JIA Xin, et al. Changes in Phenolics and Antioxidant Capability of Two Chinese Milk Vetch Sprouts During Germination[J]. Science and Technology of Food Industry, 2022, 43(18): 12−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070340.
Citation: ZHAO Qiyan, TANG Ning, JIA Xin, et al. Changes in Phenolics and Antioxidant Capability of Two Chinese Milk Vetch Sprouts During Germination[J]. Science and Technology of Food Industry, 2022, 43(18): 12−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070340.

Changes in Phenolics and Antioxidant Capability of Two Chinese Milk Vetch Sprouts During Germination

More Information
  • Received Date: July 27, 2021
  • Available Online: July 03, 2022
  • Chinese milk vetch (CMV) has high nutritional value, but it is often used as green manure and forage grasses, with low economic returns. This study aimed to broaden the channel of its resource utilization. Two CMV seeds from Hunan (Xiang No.1) and Anhui (Wan No.1) province were hydroponically developed to CMV sprouts. Taking mature stems and leaves of CMV as the positive control, the differences in phenolic composition and dynamic changes of antioxidant capability during 8~14 d after germination were analyzed and compared between two sprouts, as well as the correlation between phenolic substances and antioxidant activity. The results showed that the contents of total phenols (TPC), total flavonoids (TFC) and antioxidant capacity of two CMV sprouts had an upward trend during 8~14 d of growth. Wan No.1 sprouts performed better than Xiang No.1 sprouts. The 14th-day Wan No.1 sprouts showed high TPC (7.31 mg/g dw), TFC (5.86 mg/g dw) and strong antioxidant activities. A total of 12 phenolic compounds were detected, including five more phenolic substances than mature stems and leaves, which were gallic acid, ferulic acid, vanillic acid, salicylic acid and syringic acid. Its dominant components were kaempferol (12.86±0.34 mg/g), apigenin (6.38±0.17 mg/g), quercetin (5.36±0.04 mg/g), p-coumaric acid (4.59±0.13 mg/g), gallic acid (3.01±0.11 mg/g), luteolin (3.00±0.02 mg/g) and ferulic acid (2.35±0.29 mg/g). Among them, the content of gallic acid was 13 times that of the 14th-day Xiang No.1 sprouts, and the content of p-coumaric acid was 33 times that of mature stems and leaves. This study could provide preliminary theoretical support and related parameters for CMV seed selection and sprouts breeding, and it is recommended that CMV sprouts should be further focused and studied.
  • [1]
    NIE J, YI L, XU H, et al. Leguminous cover crop Astragalus sinicus enhances grain yields and nitrogen use efficiency through increased tillering in an intensive double-cropping rice system in southern China[J]. Agronomy,2019,9(9):554. doi: 10.3390/agronomy9090554
    [2]
    曹卫东, 黄鸿翔. 关于我国恢复和发展绿肥若干问题的思考[J]. 中国土壤与肥料,2009(4):1−3. [CAO W D, HUANG H X. Thoughts on several issues of restoring and developing green manure in China[J]. Soil and Fertilizer Sciences in China,2009(4):1−3. doi: 10.3969/j.issn.1673-6257.2009.04.001

    CAO W D, HUANG H X. Thoughts on several issues of restoring and developing green manure in China[J]. Soil and Fertilizer Sciences in China, 2009(4): 1-3. doi: 10.3969/j.issn.1673-6257.2009.04.001
    [3]
    CHANG D, GAO S, ZHOU G, et al. Spectroscopic characteristics of water-extractable organic matter from different green manures (1)[J]. Environmental Technology,2020(5):1−10.
    [4]
    CHANG X, WANG J, YANG S, et al. Antioxidative, antibrowning and antibacterial activities of sixteen floral honeys[J]. Food and Function,2011,2(9):541−546. doi: 10.1039/c1fo10072f
    [5]
    兰忠明, 林新坚, 张伟光, 等. 菜用紫云英“闽紫7号”嫩茎叶营养成分分析研究[J]. 福建农业科技,2012(Z1):108−110. [LAN Z M, LIN X J, ZHANG W G, et al. Analysis on the nutritional components of the tender stems and leaves of edible Chinese milk vetch ''Minzi 7''[J]. Fujian Agricultural Science and Technology,2012(Z1):108−110.

    LAN Z M, LIN X J, ZHANG W G, et al. Analysis on the nutritional components of the tender stems and leaves of edible Chinese milk vetch "Minzi 7"[J]. Fujian agricultural science and technology, 2012 (Z1): 108-110.
    [6]
    邱孝煊, 张伟光, 张辉, 等. 菜用紫云英品种嫩梢产量、营养品质及卫生质量分析[J]. 福建农业学报,2012,27(6):626−629. [QIU X X, ZHANG W G, ZHANG H, et al. Analysis of yield, nutritional quality and hygienic quality of tender shoots of edible Chinese milk vetch[J]. Fujian Agricultural Journal,2012,27(6):626−629. doi: 10.3969/j.issn.1008-0384.2012.06.013

    QIU X X, ZHANG W G, ZHANG H, et al. Analysis of yield, nutritional quality and hygienic quality of tender shoots of edible Chinese milk vetch[J]. Fujian Agricultural Journal, 2012, 27(6): 626-629. doi: 10.3969/j.issn.1008-0384.2012.06.013
    [7]
    何春梅, 兰忠明, 林新坚, 等. 菜用紫云英品种筛选及高效施肥模式研究[J]. 福建农业学报,2014,29(4):334−338. [HE C M, LAN Z M, LIN X J, et al. Selection of vegetable Chinese milk vetch species varieties and study on high-efficiency fertilization models[J]. Fujian Agricultural Journal,2014,29(4):334−338. doi: 10.3969/j.issn.1008-0384.2014.04.008

    HE C M, LAN Z M, LIN X J, et al. Selection of vegetable Chinese milk vetch species varieties and study on high-efficiency fertilization models[J]. Fujian Agricultural Journal, 2014, 29(4): 334-338. doi: 10.3969/j.issn.1008-0384.2014.04.008
    [8]
    季卫英, 单英杰, 汪洁. 浙江省紫云英综合利用现状及对策[J]. 浙江农业科学,2020,61(4):612−614. [JI W Y, SHAN Y J, WANG J. Current status and countermeasures of comprehensive utilization of Chinese milk vetch in Zhejiang Province[J]. Journal of Zhejiang Agricultural Sciences,2020,61(4):612−614. doi: 10.16178/j.issn.0528-9017.20200402

    JI W Y, SHAN Y J, WANG J. Current status and countermeasures of comprehensive utilization of Chinese milk vetch in Zhejiang Province[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(4): 612-614. doi: 10.16178/j.issn.0528-9017.20200402
    [9]
    季卫英, 徐静, 王建红, 等. 菜用紫云英品种筛选及种植效益初探[J]. 浙江农业科学,2021,62(4):730−732. [JI W Y, XU J, WANG J H, et al. Selection of vegetable Chinese milk vetch species varieties and preliminary study on planting benefit[J]. Journal of Zhejiang Agricultural Sciences,2021,62(4):730−732. doi: 10.16178/j.issn.0528-9017.20210428

    JI W Y, XU J, WANG J H, et al. Selection of vegetable Chinese milk vetch species varieties and preliminary study on planting benefit[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(4): 730-732. doi: 10.16178/j.issn.0528-9017.20210428
    [10]
    GHOORA M, BABU D R, SRIVIDYA N. Nutrient composition, oxalate content and nutritional ranking of ten culinary microgreens[J]. Journal of Food Composition and Analysis,2020,91:103495. doi: 10.1016/j.jfca.2020.103495
    [11]
    EBERT A W, CHANG C H, YAN M R, et al. Nutritional composition of mungbean and soybean sprouts compared to their adult growth stage[J]. Food Chemistry,2017,237(Dec.15):15−22.
    [12]
    GAN R Y, WANG M F, LUI W Y, et al. Dynamic changes in phytochemical composition and antioxidant capacity in green and black mung bean (Vigna radiata) sprouts[J]. International Journal of Food Science and Technology,2016,51(9):2090−2098. doi: 10.1111/ijfs.13185
    [13]
    HUANG X, CAI W, XU B. Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time[J]. Food Chemistry,2014,143:268−276. doi: 10.1016/j.foodchem.2013.07.080
    [14]
    TEIXEIRA-GUEDES C I, OPPOLZER D, BARROS A I, et al. Phenolic rich extracts from cowpea sprouts decrease cell proliferation and enhance 5-fluorouracil effect in human colorectal cancer cell lines[J]. Journal of Functional Foods,2019,60:103452. doi: 10.1016/j.jff.2019.103452
    [15]
    COFFIGNIEZ F, RYCHLIK M, MESTRES C, et al. Modelling folates reaction kinetics during cowpea seed germination in comparison with soaking[J]. Food Chemistry,2020,340:127960.
    [16]
    LIU C, QIN K, QI Y, et al. Optimization of ultrasonic extraction of total flavonoids from Tussilago farfara L. using response surface methodology[J]. Die Pharmazie-An International Journal of Pharmaceutical Sciences,2014,69(4):311−315.
    [17]
    XU H, BAO Y. Response surface optimization of extraction and antioxidant activity of total flavonoids from seed shell of Juglans mandshurica[J]. Food Science and Technology Research,2014,20(3):715−724. doi: 10.3136/fstr.20.715
    [18]
    KADLEC P, RUBECOVA A, HINKOVA A, et al. Processing of yellow pea by germination, microwave treatment and drying[J]. Innovative Food Science and Emerging Technologies,2001,2(2):133−137. doi: 10.1016/S1466-8564(01)00036-4
    [19]
    THIRUNATHAN P, MANICKAVASAGAN A. Processing methods for reducing alpha-galactosides in pulses[J]. Critical Reviews in Food Science and Nutrition,2019,59(20):3334−3348. doi: 10.1080/10408398.2018.1490886
    [20]
    国家卫生和计划生育委员会. GB 5009.3-2016 食品中水分的测定方法[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission. GB 5009.3-2016 Determination of moisture in food[S]. Beijing: China Standard Press, 2016.
    [21]
    国家食品药品监督管理总局. GB 5009.5-2016食品中蛋白质的测定方法[S]. 北京: 中国标准出版社, 2016.

    China Food and Drug Administration. GB 5009.5-2016 Determination of protein in food[S]. Beijing: China Standard Press, 2016.
    [22]
    国家食品药品监督管理总局. GB 5009.9-2016 食品中淀粉的测定方法[S]. 北京: 中国标准出版社, 2016.

    China Food and Drug Administration. GB 5009.9-2016 Determination of starch in food[S]. Beijing: China Standard Press, 2016.
    [23]
    国家食品药品监督管理总局. GB 5009.6-2016 食品中脂肪的测定方法[S]. 北京: 中国标准出版社, 2016.

    China Food and Drug Administration. GB 5009.6-2016 Determination of lipid in food[S]. Beijing: China Standard Press, 2016.
    [24]
    中国国家标准化管理委员会. GB/T 5009.10-2003 植物类食品中粗纤维的测定[S]. 北京: 中国标准出版社, 2003.

    China National Standardization Management Committee. GB/T 5009.10-2003 Determination of crude fiber in plant-based food[S]. Beijing: China Standard Press, 2003.
    [25]
    国家卫生和计划生育委员会. GB 5009.4-2016 食品中灰分的测定方法[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission. GB 5009.4-2016 Determination of ash in plant-based food[S]. Beijing: China Standard Press, 2016.
    [26]
    MASTROPASQUA L, DIPIERRO N, PACIOLLA C. Effects of darkness and light spectra on nutrients and pigments in radish, soybean, mung bean and pumpkin sprouts[J]. Antioxidants,2020,9(6):558. doi: 10.3390/antiox9060558
    [27]
    钟少杰, 何春梅, 林诚. 响应面法优化紫云英总黄酮提取工艺[J]. 福建农业科技, 2016(9): 6−11.

    ZHONG S J, HE C M, LIN C. Optimization of extraction process of flavonoids of Chinese milk vetch by response surface methodology[J]. Fujian Agricultural Science and Technology, 2016(9): 6−11.
    [28]
    WANG M, DING Y, WANG Q, et al. NaCl treatment on physio-biochemical metabolism and phenolics accumulation in barley seedlings[J]. Food Chemistry,2020,331:127282. doi: 10.1016/j.foodchem.2020.127282
    [29]
    DEETAE P, PARICHANON P, TRAKUNLEEWATTHANA P, et al. Antioxidant and anti-glycation properties of Thai herbal teas in comparison with conventional teas[J]. Food Chemistry,2012,133(3):953−959. doi: 10.1016/j.foodchem.2012.02.012
    [30]
    KOODKAEW I. NaCl and glucose improve health-promoting properties in mung bean sprouts[J]. Scientia Horticulturae,2019,247:235−241. doi: 10.1016/j.scienta.2018.12.022
    [31]
    ISLAM M Z, PARK B J, KANG H M, et al. Influence of selenium biofortification on the bioactive compounds and antioxidant activity of wheat microgreen extract[J]. Food Chemistry,2020,309:125763. doi: 10.1016/j.foodchem.2019.125763
    [32]
    HYMOWITZ T, COLLINS F, PANCZNER J, et al. Relationship between the content of oil, protein, and sugar in soybean seed 1[J]. Agronomy Journal,1972,64(5):613−616. doi: 10.2134/agronj1972.00021962006400050019x
    [33]
    DAHIYA P, LINNEMANN A, VAN BOEKEL M, et al. Mung bean: Technological and nutritional potential[J]. Critical Reviews in Food Science and Nutrition,2015,55(5):670−688. doi: 10.1080/10408398.2012.671202
    [34]
    ALAJAJI S A, EL-ADAWY T A. Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods[J]. Journal of Food Composition and Analysis,2006,19(8):806−812. doi: 10.1016/j.jfca.2006.03.015
    [35]
    KATOCH R. Nutritional potential of rice bean (Vigna umbellata): An underutilized legume[J]. Journal of Food Science,2013,78(1):C8−C16. doi: 10.1111/j.1750-3841.2012.02989.x
    [36]
    HUANG Y, MATTHEW C, LI F, et al. Comparative effects of stovers of four varieties of common vetch on growth performance, ruminal fermentation, and nutrient digestibility of growing lambs[J]. Animals,2020,10(4):596. doi: 10.3390/ani10040596
    [37]
    NIROULA A, KHATRI S, KHADKA D, et al. Total phenolic contents and antioxidant activity profile of selected cereal sprouts and grasses[J]. International Journal of Food Properties,2019,22(1):427−437. doi: 10.1080/10942912.2019.1588297
    [38]
    CHEN L, TAN J T G, ZHAO X, et al. Energy regulated enzyme and non-enzyme-based antioxidant properties of harvested organic mung bean sprouts (Vigna radiata)[J]. Food Science and Technology,2019,107:228−235.
    [39]
    AGUILERA Y, DÍAZ M, JIMÉNEZ T, et al. Changes in nonnutritional factors and antioxidant activity during germination of nonconventional legumes[J]. Journal of Agricultural and Food Chemistry,2013,61(34):8120−8125. doi: 10.1021/jf4022652
    [40]
    KLUSKA M, JUSZCZAK M, UCHOWSKI J, et al. Kaempferol and its glycoside derivatives as modulators of etoposide activity in HL-60 cells[J]. International Journal of Molecular Sciences,2021,22(7):3520. doi: 10.3390/ijms22073520
    [41]
    ANUSHA C, SUMATHI T, JOSEPH L D. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis[J]. Chemico-biological Interactions,2017,269:67. doi: 10.1016/j.cbi.2017.03.016
    [42]
    XIE B, ZENG Z, LIAO S, et al. Kaempferol ameliorates the inhibitory activity of dexamethasone in the osteogenesis of MC3T3-E1 cells by JNK and p38-MAPK pathways[J]. Frontiers in Pharmacology,2021,12:739326. doi: 10.3389/fphar.2021.739326
    [43]
    LIMA S, DOURADO N S, CLEIDE, et al. Neuroimmunomodulatory and neuroprotective effects of the flavonoid apigenin in in vitro models of neuroinflammation associated with Alzheimer’s disease[J]. Frontiers in Aging Neuroscience,2020,12:119. doi: 10.3389/fnagi.2020.00119
    [44]
    曹晓华, 程祖锌, 林兆娜, 等. UPLC测定豌豆尖中槲皮素和山奈酚的含量[J]. 食品科技,2017,42(9):284−287. [CAO X H, CHENG Z X, LIN Z N, et al. Determination of quercetin and kaempferol in pea shoots by UPLC[J]. Food Technology,2017,42(9):284−287. doi: 10.13684/j.cnki.spkj.2017.09.055

    CAO X H, CHENG Z X, LIN Z N, et al. Determination of quercetin and kaempferol in pea shoots by UPLC[J]. Food Technology. 2017, 42(9): 284-287. doi: 10.13684/j.cnki.spkj.2017.09.055
    [45]
    KAUR M, ASTHIR B, MAHAJAN G. Variation in antioxidants, bioactive compounds and antioxidant capacity in germinated and ungerminated grains of ten rice cultivars[J]. Rice Science,2017,24(6):349−359. doi: 10.1016/j.rsci.2017.08.002
    [46]
    DING T, CAO K, FANG W, et al. Evaluation of phenolic components (anthocyanins, flavanols, phenolic acids, and flavonols) and their antioxidant properties of peach fruits[J]. Scientia Horticulturae,2020,268:109365. doi: 10.1016/j.scienta.2020.109365
    [47]
    MA, WANG, WANG, et al. GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress[J]. Food Chemistry,2018,270(Jan.1):593−601.
  • Cited by

    Periodical cited type(7)

    1. 陈雪花,陈建平,罗宝浈,李佳睿,李瑞,刘晓菲,宋兵兵,钟赛意. 硫酸软骨素纳米硒的结构表征及其对Hela细胞迁移和侵袭的影响. 食品与发酵工业. 2024(03): 73-79 .
    2. 赵猛,丁子康,李欣悦,王晓梅,胡祖广,张忠山. 低分子量坛紫菜多糖纳米硒的制备、表征及其体外抗氧化活性. 食品工业科技. 2024(23): 170-178 . 本站查看
    3. 向东,朱玉昌,周大寨,李爽. 含硒活性物质研发技术进展. 山东化工. 2023(05): 66-69+77 .
    4. 王鑫,周卓,王峙力,修伟业,罗钰,马永强. 硒化甜玉米芯多糖对非酶糖基化的抑制作用. 食品工业科技. 2023(19): 17-23 . 本站查看
    5. 徐孝楠,马浩迪,续炎,李璇,覃智,权春善,张丽影. 耐硒海洋菌株的筛选、鉴定及其产纳米硒的抗菌活性. 食品工业科技. 2023(24): 152-158 . 本站查看
    6. 陈博文,陈建平,黄文浩,钟赛意,李瑞,宋兵兵,刘晓菲,汪卓. 岩藻多糖纳米硒的制备及其抑制肿瘤细胞增殖的研究. 天然产物研究与开发. 2023(12): 2117-2126 .
    7. 向文杰,殷彩桥,黄慧,陈婷. 硒及硒化合物对食管癌作用机制研究进展. 社区医学杂志. 2022(22): 1295-1300 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (165) PDF downloads (18) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return