Citation: | ZHAO Qiyan, TANG Ning, JIA Xin, et al. Changes in Phenolics and Antioxidant Capability of Two Chinese Milk Vetch Sprouts During Germination[J]. Science and Technology of Food Industry, 2022, 43(18): 12−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070340. |
[1] |
NIE J, YI L, XU H, et al. Leguminous cover crop Astragalus sinicus enhances grain yields and nitrogen use efficiency through increased tillering in an intensive double-cropping rice system in southern China[J]. Agronomy,2019,9(9):554. doi: 10.3390/agronomy9090554
|
[2] |
曹卫东, 黄鸿翔. 关于我国恢复和发展绿肥若干问题的思考[J]. 中国土壤与肥料,2009(4):1−3. [CAO W D, HUANG H X. Thoughts on several issues of restoring and developing green manure in China[J]. Soil and Fertilizer Sciences in China,2009(4):1−3. doi: 10.3969/j.issn.1673-6257.2009.04.001
CAO W D, HUANG H X. Thoughts on several issues of restoring and developing green manure in China[J]. Soil and Fertilizer Sciences in China, 2009(4): 1-3. doi: 10.3969/j.issn.1673-6257.2009.04.001
|
[3] |
CHANG D, GAO S, ZHOU G, et al. Spectroscopic characteristics of water-extractable organic matter from different green manures (1)[J]. Environmental Technology,2020(5):1−10.
|
[4] |
CHANG X, WANG J, YANG S, et al. Antioxidative, antibrowning and antibacterial activities of sixteen floral honeys[J]. Food and Function,2011,2(9):541−546. doi: 10.1039/c1fo10072f
|
[5] |
兰忠明, 林新坚, 张伟光, 等. 菜用紫云英“闽紫7号”嫩茎叶营养成分分析研究[J]. 福建农业科技,2012(Z1):108−110. [LAN Z M, LIN X J, ZHANG W G, et al. Analysis on the nutritional components of the tender stems and leaves of edible Chinese milk vetch ''Minzi 7''[J]. Fujian Agricultural Science and Technology,2012(Z1):108−110.
LAN Z M, LIN X J, ZHANG W G, et al. Analysis on the nutritional components of the tender stems and leaves of edible Chinese milk vetch "Minzi 7"[J]. Fujian agricultural science and technology, 2012 (Z1): 108-110.
|
[6] |
邱孝煊, 张伟光, 张辉, 等. 菜用紫云英品种嫩梢产量、营养品质及卫生质量分析[J]. 福建农业学报,2012,27(6):626−629. [QIU X X, ZHANG W G, ZHANG H, et al. Analysis of yield, nutritional quality and hygienic quality of tender shoots of edible Chinese milk vetch[J]. Fujian Agricultural Journal,2012,27(6):626−629. doi: 10.3969/j.issn.1008-0384.2012.06.013
QIU X X, ZHANG W G, ZHANG H, et al. Analysis of yield, nutritional quality and hygienic quality of tender shoots of edible Chinese milk vetch[J]. Fujian Agricultural Journal, 2012, 27(6): 626-629. doi: 10.3969/j.issn.1008-0384.2012.06.013
|
[7] |
何春梅, 兰忠明, 林新坚, 等. 菜用紫云英品种筛选及高效施肥模式研究[J]. 福建农业学报,2014,29(4):334−338. [HE C M, LAN Z M, LIN X J, et al. Selection of vegetable Chinese milk vetch species varieties and study on high-efficiency fertilization models[J]. Fujian Agricultural Journal,2014,29(4):334−338. doi: 10.3969/j.issn.1008-0384.2014.04.008
HE C M, LAN Z M, LIN X J, et al. Selection of vegetable Chinese milk vetch species varieties and study on high-efficiency fertilization models[J]. Fujian Agricultural Journal, 2014, 29(4): 334-338. doi: 10.3969/j.issn.1008-0384.2014.04.008
|
[8] |
季卫英, 单英杰, 汪洁. 浙江省紫云英综合利用现状及对策[J]. 浙江农业科学,2020,61(4):612−614. [JI W Y, SHAN Y J, WANG J. Current status and countermeasures of comprehensive utilization of Chinese milk vetch in Zhejiang Province[J]. Journal of Zhejiang Agricultural Sciences,2020,61(4):612−614. doi: 10.16178/j.issn.0528-9017.20200402
JI W Y, SHAN Y J, WANG J. Current status and countermeasures of comprehensive utilization of Chinese milk vetch in Zhejiang Province[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(4): 612-614. doi: 10.16178/j.issn.0528-9017.20200402
|
[9] |
季卫英, 徐静, 王建红, 等. 菜用紫云英品种筛选及种植效益初探[J]. 浙江农业科学,2021,62(4):730−732. [JI W Y, XU J, WANG J H, et al. Selection of vegetable Chinese milk vetch species varieties and preliminary study on planting benefit[J]. Journal of Zhejiang Agricultural Sciences,2021,62(4):730−732. doi: 10.16178/j.issn.0528-9017.20210428
JI W Y, XU J, WANG J H, et al. Selection of vegetable Chinese milk vetch species varieties and preliminary study on planting benefit[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(4): 730-732. doi: 10.16178/j.issn.0528-9017.20210428
|
[10] |
GHOORA M, BABU D R, SRIVIDYA N. Nutrient composition, oxalate content and nutritional ranking of ten culinary microgreens[J]. Journal of Food Composition and Analysis,2020,91:103495. doi: 10.1016/j.jfca.2020.103495
|
[11] |
EBERT A W, CHANG C H, YAN M R, et al. Nutritional composition of mungbean and soybean sprouts compared to their adult growth stage[J]. Food Chemistry,2017,237(Dec.15):15−22.
|
[12] |
GAN R Y, WANG M F, LUI W Y, et al. Dynamic changes in phytochemical composition and antioxidant capacity in green and black mung bean (Vigna radiata) sprouts[J]. International Journal of Food Science and Technology,2016,51(9):2090−2098. doi: 10.1111/ijfs.13185
|
[13] |
HUANG X, CAI W, XU B. Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time[J]. Food Chemistry,2014,143:268−276. doi: 10.1016/j.foodchem.2013.07.080
|
[14] |
TEIXEIRA-GUEDES C I, OPPOLZER D, BARROS A I, et al. Phenolic rich extracts from cowpea sprouts decrease cell proliferation and enhance 5-fluorouracil effect in human colorectal cancer cell lines[J]. Journal of Functional Foods,2019,60:103452. doi: 10.1016/j.jff.2019.103452
|
[15] |
COFFIGNIEZ F, RYCHLIK M, MESTRES C, et al. Modelling folates reaction kinetics during cowpea seed germination in comparison with soaking[J]. Food Chemistry,2020,340:127960.
|
[16] |
LIU C, QIN K, QI Y, et al. Optimization of ultrasonic extraction of total flavonoids from Tussilago farfara L. using response surface methodology[J]. Die Pharmazie-An International Journal of Pharmaceutical Sciences,2014,69(4):311−315.
|
[17] |
XU H, BAO Y. Response surface optimization of extraction and antioxidant activity of total flavonoids from seed shell of Juglans mandshurica[J]. Food Science and Technology Research,2014,20(3):715−724. doi: 10.3136/fstr.20.715
|
[18] |
KADLEC P, RUBECOVA A, HINKOVA A, et al. Processing of yellow pea by germination, microwave treatment and drying[J]. Innovative Food Science and Emerging Technologies,2001,2(2):133−137. doi: 10.1016/S1466-8564(01)00036-4
|
[19] |
THIRUNATHAN P, MANICKAVASAGAN A. Processing methods for reducing alpha-galactosides in pulses[J]. Critical Reviews in Food Science and Nutrition,2019,59(20):3334−3348. doi: 10.1080/10408398.2018.1490886
|
[20] |
国家卫生和计划生育委员会. GB 5009.3-2016 食品中水分的测定方法[S]. 北京: 中国标准出版社, 2016.
National Health and Family Planning Commission. GB 5009.3-2016 Determination of moisture in food[S]. Beijing: China Standard Press, 2016.
|
[21] |
国家食品药品监督管理总局. GB 5009.5-2016食品中蛋白质的测定方法[S]. 北京: 中国标准出版社, 2016.
China Food and Drug Administration. GB 5009.5-2016 Determination of protein in food[S]. Beijing: China Standard Press, 2016.
|
[22] |
国家食品药品监督管理总局. GB 5009.9-2016 食品中淀粉的测定方法[S]. 北京: 中国标准出版社, 2016.
China Food and Drug Administration. GB 5009.9-2016 Determination of starch in food[S]. Beijing: China Standard Press, 2016.
|
[23] |
国家食品药品监督管理总局. GB 5009.6-2016 食品中脂肪的测定方法[S]. 北京: 中国标准出版社, 2016.
China Food and Drug Administration. GB 5009.6-2016 Determination of lipid in food[S]. Beijing: China Standard Press, 2016.
|
[24] |
中国国家标准化管理委员会. GB/T 5009.10-2003 植物类食品中粗纤维的测定[S]. 北京: 中国标准出版社, 2003.
China National Standardization Management Committee. GB/T 5009.10-2003 Determination of crude fiber in plant-based food[S]. Beijing: China Standard Press, 2003.
|
[25] |
国家卫生和计划生育委员会. GB 5009.4-2016 食品中灰分的测定方法[S]. 北京: 中国标准出版社, 2016.
National Health and Family Planning Commission. GB 5009.4-2016 Determination of ash in plant-based food[S]. Beijing: China Standard Press, 2016.
|
[26] |
MASTROPASQUA L, DIPIERRO N, PACIOLLA C. Effects of darkness and light spectra on nutrients and pigments in radish, soybean, mung bean and pumpkin sprouts[J]. Antioxidants,2020,9(6):558. doi: 10.3390/antiox9060558
|
[27] |
钟少杰, 何春梅, 林诚. 响应面法优化紫云英总黄酮提取工艺[J]. 福建农业科技, 2016(9): 6−11.
ZHONG S J, HE C M, LIN C. Optimization of extraction process of flavonoids of Chinese milk vetch by response surface methodology[J]. Fujian Agricultural Science and Technology, 2016(9): 6−11.
|
[28] |
WANG M, DING Y, WANG Q, et al. NaCl treatment on physio-biochemical metabolism and phenolics accumulation in barley seedlings[J]. Food Chemistry,2020,331:127282. doi: 10.1016/j.foodchem.2020.127282
|
[29] |
DEETAE P, PARICHANON P, TRAKUNLEEWATTHANA P, et al. Antioxidant and anti-glycation properties of Thai herbal teas in comparison with conventional teas[J]. Food Chemistry,2012,133(3):953−959. doi: 10.1016/j.foodchem.2012.02.012
|
[30] |
KOODKAEW I. NaCl and glucose improve health-promoting properties in mung bean sprouts[J]. Scientia Horticulturae,2019,247:235−241. doi: 10.1016/j.scienta.2018.12.022
|
[31] |
ISLAM M Z, PARK B J, KANG H M, et al. Influence of selenium biofortification on the bioactive compounds and antioxidant activity of wheat microgreen extract[J]. Food Chemistry,2020,309:125763. doi: 10.1016/j.foodchem.2019.125763
|
[32] |
HYMOWITZ T, COLLINS F, PANCZNER J, et al. Relationship between the content of oil, protein, and sugar in soybean seed 1[J]. Agronomy Journal,1972,64(5):613−616. doi: 10.2134/agronj1972.00021962006400050019x
|
[33] |
DAHIYA P, LINNEMANN A, VAN BOEKEL M, et al. Mung bean: Technological and nutritional potential[J]. Critical Reviews in Food Science and Nutrition,2015,55(5):670−688. doi: 10.1080/10408398.2012.671202
|
[34] |
ALAJAJI S A, EL-ADAWY T A. Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods[J]. Journal of Food Composition and Analysis,2006,19(8):806−812. doi: 10.1016/j.jfca.2006.03.015
|
[35] |
KATOCH R. Nutritional potential of rice bean (Vigna umbellata): An underutilized legume[J]. Journal of Food Science,2013,78(1):C8−C16. doi: 10.1111/j.1750-3841.2012.02989.x
|
[36] |
HUANG Y, MATTHEW C, LI F, et al. Comparative effects of stovers of four varieties of common vetch on growth performance, ruminal fermentation, and nutrient digestibility of growing lambs[J]. Animals,2020,10(4):596. doi: 10.3390/ani10040596
|
[37] |
NIROULA A, KHATRI S, KHADKA D, et al. Total phenolic contents and antioxidant activity profile of selected cereal sprouts and grasses[J]. International Journal of Food Properties,2019,22(1):427−437. doi: 10.1080/10942912.2019.1588297
|
[38] |
CHEN L, TAN J T G, ZHAO X, et al. Energy regulated enzyme and non-enzyme-based antioxidant properties of harvested organic mung bean sprouts (Vigna radiata)[J]. Food Science and Technology,2019,107:228−235.
|
[39] |
AGUILERA Y, DÍAZ M, JIMÉNEZ T, et al. Changes in nonnutritional factors and antioxidant activity during germination of nonconventional legumes[J]. Journal of Agricultural and Food Chemistry,2013,61(34):8120−8125. doi: 10.1021/jf4022652
|
[40] |
KLUSKA M, JUSZCZAK M, UCHOWSKI J, et al. Kaempferol and its glycoside derivatives as modulators of etoposide activity in HL-60 cells[J]. International Journal of Molecular Sciences,2021,22(7):3520. doi: 10.3390/ijms22073520
|
[41] |
ANUSHA C, SUMATHI T, JOSEPH L D. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis[J]. Chemico-biological Interactions,2017,269:67. doi: 10.1016/j.cbi.2017.03.016
|
[42] |
XIE B, ZENG Z, LIAO S, et al. Kaempferol ameliorates the inhibitory activity of dexamethasone in the osteogenesis of MC3T3-E1 cells by JNK and p38-MAPK pathways[J]. Frontiers in Pharmacology,2021,12:739326. doi: 10.3389/fphar.2021.739326
|
[43] |
LIMA S, DOURADO N S, CLEIDE, et al. Neuroimmunomodulatory and neuroprotective effects of the flavonoid apigenin in in vitro models of neuroinflammation associated with Alzheimer’s disease[J]. Frontiers in Aging Neuroscience,2020,12:119. doi: 10.3389/fnagi.2020.00119
|
[44] |
曹晓华, 程祖锌, 林兆娜, 等. UPLC测定豌豆尖中槲皮素和山奈酚的含量[J]. 食品科技,2017,42(9):284−287. [CAO X H, CHENG Z X, LIN Z N, et al. Determination of quercetin and kaempferol in pea shoots by UPLC[J]. Food Technology,2017,42(9):284−287. doi: 10.13684/j.cnki.spkj.2017.09.055
CAO X H, CHENG Z X, LIN Z N, et al. Determination of quercetin and kaempferol in pea shoots by UPLC[J]. Food Technology. 2017, 42(9): 284-287. doi: 10.13684/j.cnki.spkj.2017.09.055
|
[45] |
KAUR M, ASTHIR B, MAHAJAN G. Variation in antioxidants, bioactive compounds and antioxidant capacity in germinated and ungerminated grains of ten rice cultivars[J]. Rice Science,2017,24(6):349−359. doi: 10.1016/j.rsci.2017.08.002
|
[46] |
DING T, CAO K, FANG W, et al. Evaluation of phenolic components (anthocyanins, flavanols, phenolic acids, and flavonols) and their antioxidant properties of peach fruits[J]. Scientia Horticulturae,2020,268:109365. doi: 10.1016/j.scienta.2020.109365
|
[47] |
MA, WANG, WANG, et al. GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress[J]. Food Chemistry,2018,270(Jan.1):593−601.
|
1. |
陈雪花,陈建平,罗宝浈,李佳睿,李瑞,刘晓菲,宋兵兵,钟赛意. 硫酸软骨素纳米硒的结构表征及其对Hela细胞迁移和侵袭的影响. 食品与发酵工业. 2024(03): 73-79 .
![]() | |
2. |
赵猛,丁子康,李欣悦,王晓梅,胡祖广,张忠山. 低分子量坛紫菜多糖纳米硒的制备、表征及其体外抗氧化活性. 食品工业科技. 2024(23): 170-178 .
![]() | |
3. |
向东,朱玉昌,周大寨,李爽. 含硒活性物质研发技术进展. 山东化工. 2023(05): 66-69+77 .
![]() | |
4. |
王鑫,周卓,王峙力,修伟业,罗钰,马永强. 硒化甜玉米芯多糖对非酶糖基化的抑制作用. 食品工业科技. 2023(19): 17-23 .
![]() | |
5. |
徐孝楠,马浩迪,续炎,李璇,覃智,权春善,张丽影. 耐硒海洋菌株的筛选、鉴定及其产纳米硒的抗菌活性. 食品工业科技. 2023(24): 152-158 .
![]() | |
6. |
陈博文,陈建平,黄文浩,钟赛意,李瑞,宋兵兵,刘晓菲,汪卓. 岩藻多糖纳米硒的制备及其抑制肿瘤细胞增殖的研究. 天然产物研究与开发. 2023(12): 2117-2126 .
![]() | |
7. |
向文杰,殷彩桥,黄慧,陈婷. 硒及硒化合物对食管癌作用机制研究进展. 社区医学杂志. 2022(22): 1295-1300 .
![]() |