Citation: | SHI Changbo, SUN Xinmeng, ZHAO Juyang, et al. Interaction Mechanism between Tannic Acid and Protein and Its Effects on Physicochemical and Functional Properties of Protein[J]. Science and Technology of Food Industry, 2022, 43(14): 453−460. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070225. |
[1] |
ISHTIKHAR M, AHMAD E, SIDDIQUI Z, et al. Biophysical insight into the interaction mechanism of plant derived polyphenolic compound tannic acid with homologous mammalian serum albumins[J]. International Journal of Biological Macromolecules, 2017: S0141813017330040.
|
[2] |
石闪闪, 何国庆. 单宁酸及其应用研究进展[J]. 食品工业科技,2012,33(4):410−412,416. [SHI S S, HE G Q. The research progress of tannic acid and its application[J]. Science and Technology of Food Industry,2012,33(4):410−412,416.
SHI S S, HE G Q. The research progress of tannic acid and its application [J]. Science and Technology of Food Industry, 2012, 33(4): 410-412, 416
|
[3] |
AROSO I M, ARAÚJO, ANA R, et al. Cork–current technological developments and future perspectives for this natural, renewable and sustainable material[J]. ACS Sustainable Chemistry & Engineering, 2017: acssuschemeng, 7b00751.
|
[4] |
SHIRMOHAMMADLI Y, EFHAMISISI D, PIZZI A. Tannins as a sustainable raw material for green chemistry: A review[J]. Industrial Crops and Products,2018,126:316−332. doi: 10.1016/j.indcrop.2018.10.034
|
[5] |
FRAZIER R A, DEAVILLE E R, GREEN R J, et al. Interactions of tea tannins and condensed tannins with proteins[J]. Journal of Pharmaceutical and Biomedical Analysis,2010,51(2):490−495. doi: 10.1016/j.jpba.2009.05.035
|
[6] |
ADRAR N S, MADANI K, ADRAR S. Impact of the inhibition of proteins activities and the chemical aspect of polyphenols-proteins interactions[J]. PharmaNutrition,2019,7:100142. doi: 10.1016/j.phanu.2019.100142
|
[7] |
GIRARD A L, CASTELL-PEREZ M E, BEAN S R, et al. Effect of condensed tannin profile on wheat flour dough rheology[J]. Journal of Agricultural & Food Chemistry,2016:7348.
|
[8] |
AMOAKO D B, AWIKA J M. Polymeric tannins significantly alter properties and in vitro digestibility of partially gelatinized intact starch granule[J]. Food Chemistry,2016,208:10−17. doi: 10.1016/j.foodchem.2016.03.096
|
[9] |
PICCHIO M L, LINCK Y G, MONTI G A, et al. Casein films crosslinked by tannic acid for food packaging applications[J]. Food Hydrocolloids,2018,84:424−434. doi: 10.1016/j.foodhyd.2018.06.028
|
[10] |
WANG Z, KANG H, ZHANG W, et al. Improvement of interfacial interactions using natural polyphenol-inspired tannic acid-coated nanoclay enhancement of soy protein isolate biofilms[J]. Applied Surface Science,2017,401:271−282. doi: 10.1016/j.apsusc.2017.01.015
|
[11] |
ARJONA, MERLY F. Functional foods for chronic diseases[M]. Delve Publishing, 2008: 286.
|
[12] |
CHEN Y, LI Z, YI X, et al. Influence of carboxymethylcellulose on the interaction between ovalbumin and tannic acid via noncovalent bonds and its effects on emulsifying properties[J]. LWT- Food Science and Technology,2019,118:108778.
|
[13] |
QUAN T H, BENJAKUL S, SAE-LEAW T, et al. Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications[J]. Trends in Food Science & Technology,2019,91:507−517.
|
[14] |
YOU J, LUO Y, WU J. Conjugation of ovotransferrin with catechin shows improved antioxidant activity[J]. Journal of Agricultural & Food Chemistry,2014,62(12):2581−2587.
|
[15] |
黄子林, 孔祥珍, 张丽娜, 等. 蛋白质与多酚相互作用研究进展[J]. 中国粮油学报,2021,36(3):195−202. [HUANG Z L, KONG X Z, ZHANG L N, et al. Progress in the interaction between protein and polyphenols[J]. Journal of Grain and Oil of China,2021,36(3):195−202. doi: 10.3969/j.issn.1003-0174.2021.03.031
HUANG Z L, KONG X Z, ZHANG L N, et al. Progress in the interaction between protein and polyphenols [J]. Journal of Grain and Oil of China, 2021, 36(3): 195-202. doi: 10.3969/j.issn.1003-0174.2021.03.031
|
[16] |
BUREN J P V, ROBINSON W B. Formation of complexes between protein and tannic acid[J]. Journal of Agricultural & Food Chemistry,1969,17(4):772−777.
|
[17] |
JING H, HUANG X, JIANG C, et al. Effects of tannic acid on the structure and proteolytic digestion of bovine lactoferrin[J]. Food Hydrocolloids,2021(3):106666.
|
[18] |
SIMON C, BARATHIEU K, LAGUERRE M, et al. Three-dimensional structure and dynamics of wine tannin-saliva protein complexes. A multitechnique approach[J]. Biochemistry,2003,42(35):10385−10395. doi: 10.1021/bi034354p
|
[19] |
关惠, 李锋, 李大鹏. 多酚与蛋白质相互作用的研究进展[J]. 食品安全质量检测学报,2020,11(3):682−687. [GUAN H, LI F, LI D P. Research progress on the interaction between polyphenols and protein[J]. Journal of Food Safety and Quality Inspection,2020,11(3):682−687.
GUAN H, LI F, LI D P. Research progress on the interaction between polyphenols and protein [J]. Journal of Food Safety and Quality Inspection, 2020, 11(3): 682-687.
|
[20] |
OZDAL T, CAPANOGLU E, ALTAY F. A review on protein–phenolic interactions and associated changes[J]. Food Research International,2013,51(2):954−970. doi: 10.1016/j.foodres.2013.02.009
|
[21] |
WANG Y H, WAN Z L, YANG X Q, et al. Colloidal complexation of zein hydrolysate with tannic acid: Constructing peptides-based nanoemulsions for alga oil delivery[J]. Food Hydrocolloids,2016,54(mar.pt.A):40−48.
|
[22] |
FREITAS D, VICTOR. Protein/polyphenol interactions: Past and present contributions. Mechanisms of astringency perception[J]. Current Organic Chemistry,2012,16(6):724−746. doi: 10.2174/138527212799958002
|
[23] |
CONG J, CUI J, ZHANG H, et al. Binding affinity, antioxidative capacity and in vitro digestion of complexes of grape seed procyanidins and pork, chicken and fish protein[J]. Food Research International,2020,136:109530. doi: 10.1016/j.foodres.2020.109530
|
[24] |
郄雪娇, 程亚, 曾茂茂, 等. 食品多酚与蛋白相互作用及其对多酚生物可利用性影响的研究进展[J]. 食品与发酵工业,2019,45(8):232−237. [QIE X J, CHENG Y, ZENG M M, et al. Research progress on the interaction between food polyphenols and protein and its effect on the bioavailability of polyphenols[J]. Food and Fermentation Industry,2019,45(8):232−237.
QIE X J, CHENG Y, ZENG M M, et al. Research progress on the interaction between food polyphenols and protein and its effect on the bioavailability of polyphenols [J]. Food and Fermentation Industry, 2019, 45(8): 232-237.
|
[25] |
GUO Y, BAO Y H, SUN K F, et al. Effects of covalent interactions and gel characteristics on soy protein-tannic acid conjugates prepared under alkaline conditions[J]. Food Hydrocolloids,2020:106293.
|
[26] |
NIE X, ZHAO L, WANG N, et al. Phenolics-protein interaction involved in silver carp myofibrilliar protein films with hydrolysable and condensed tannins[J]. LWT-Food Science and Technology,2017,81:258−264. doi: 10.1016/j.lwt.2017.04.011
|
[27] |
CHEN Y, JIANG S, CHEN Q, et al. Antioxidant activities and emulsifying properties of porcine plasma protein hydrolysates modified by oxidized tannic acid and oxidized chlorogenic acid[J]. Process Biochemistry,2019,79:105−113. doi: 10.1016/j.procbio.2018.12.026
|
[28] |
YILDIRIM-ELIKOGLU S, ERDEM Y K. Interactions between milk proteins and polyphenols: Binding mechanisms, related changes, and the future trends in the dairy industry[J]. Food Reviews International, 2017: 665-697.
|
[29] |
YL A, DONG H, BING L D, et al. Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods[J]. Trends in Food Science & Technology,2021,110(5):470−482.
|
[30] |
XIE L, WEHLING R L, CIFTCI O, et al. Formation of complexes between tannic acid with bovine serum albumin, egg ovalbumin and bovine beta-lactoglobulin[J]. Food Research International,2017,102(dec.):195.
|
[31] |
GIRARD A L, TEFERRA T, AWIKA J M. Effects of condensed vs hydrolysable tannins on gluten film strength and stability[J]. Food Hydrocolloids,2019,89(APR.):36−43.
|
[32] |
PRIGENT S V E, VORAGEN A G J, KONINGSVELD G A V, et al. Interactions between globular proteins and procyanidins of different degrees of polymerization[J]. Journal of Dairy Science,2009,92(12):5843−5853. doi: 10.3168/jds.2009-2261
|
[33] |
ELAINE, KASPCHAK, ANA, et al. Effect of divalent cations on bovine serum albumin (BSA) and tannic acid interaction and its influence on turbidity and in vitro protein digestibility[J]. International Journal of Biological Macromolecules,2019,136:486−492. doi: 10.1016/j.ijbiomac.2019.06.102
|
[34] |
JAKOBEK L. Interactions of polyphenols with carbohydrates, lipids and proteins[J]. Food Chemistry,2015,175:556−567.
|
[35] |
CARVALHO E, MARIA JOO PÓVOAS, MATEUS N, et al. Application of flow nephelometry to the analysis of the influence of carbohydrates on protein–tannin interactions[J]. Journal of the Science of Food and Agriculture,2006,86(6):891−896. doi: 10.1002/jsfa.2430
|
[36] |
LE BOURVELLEC C, RENARD C M G C. Interactions between polyphenols and macromolecules: Quantification methods and mechanisms[J]. Critical Reviews in Food Science & Nutrition,2012,52(3):213−248.
|
[37] |
PRIGENT S, KONINGSVELD G, GRUPPEN H, et al. Effects of non-covalent interactions with 5-O-caffeoylquinic acid (chlorogenic acid) on the heat denaturation and solubility of globular proteins[J]. Journal of Agricultural & Food Chemistry,2003,51(17):5088−5095.
|
[38] |
D AMOAKO, AWIKA J M. Polyphenol interaction with food carbohydrates and consequences on availability of dietary glucose[J]. Current Opinion in Food Science,2016,8(Complete):14−18.
|
[39] |
JAUREGI P, GUO Y, ADELOYE J B. Whey proteins-polyphenols interactions can be exploited to reduce astringency or increase solubility and stability of bioactives in foods[J]. Food Research International,2020:110019.
|
[40] |
BOHIN M C, VINCKEN J P, WESTPHAL A H, et al. Interaction of flavan-3-ol derivatives and different caseins is determined by more than proline content and number of proline repeats[J]. Food Chemistry,2014,158(sep.1):408−416.
|
[41] |
KASPCHAK E, MAFRA L I, MAFRA M R. Effect of heating and ionic strength on the interaction of bovine serum albumin and the antinutrients tannic and phytic acids, and its influence on in vitro protein digestibility[J]. Food Chemistry,2018,252:1−8. doi: 10.1016/j.foodchem.2018.01.089
|
[42] |
ANA M L, MARIN P, V MAR. Effects of high intensity ultrasound on disaggregation of a macromolecular procyanidin-rich fraction from Vitis vinifera L. seed extract and evaluation of its antioxidant activity[J]. Ultrasonics Sonochemistry, 2018, 50: S1350417718310617-.
|
[43] |
JIN B, ZHOU X, ZHONG Y, et al. The synergistic effect of high pressure processing and pectin on the physicochemical stability and antioxidant properties of biopolymer complexes composed of soy protein and coumarin[J]. Process Biochemistry,2021:104.
|
[44] |
韩莛璐. 高压均质和超声处理对酪蛋白和乳清蛋白结构及功能特性的研究[D]. 济南: 山东师范大学, 2020.
HAN L L. Study on the structure and functional properties of casein and whey protein by high pressure homogenization and ultrasonic treatment [D]. Jinan: Shandong Normal University, 2020.
|
[45] |
陈雨桐, 梁宏闪, 李斌. 单宁酸对小麦醇溶蛋白结构及功能性质的影响[J]. 食品工业科技,2020,41(6):39−46,52. [CHEN Y T, LIANG H S, LI B. Effects of tannic acid on the structure and functional properties of wheat gliadin[J]. Science and Technology of Food Industry,2020,41(6):39−46,52.
CHEN Y T, LIANG H S, LI B. Effects of tannic acid on the structure and functional properties of wheat gliadin[J]. Science and Technology of Food Industry, 2020, 41(6): 39-46, 52
|
[46] |
葛思彤, 贾睿, 刘回民, 等. 玉米醇溶蛋白基纳米颗粒的制备及应用研究进展[J]. 食品科学,2021,42(15):285−292. [GE S T, JIA R, LIU H M, et al. Progress in preparation and application of zein based nanoparticles[J]. Food Science,2021,42(15):285−292. doi: 10.7506/spkx1002-6630-20210127-297
GE S T, JIA R, LIU H M, et al. Progress in preparation and application of zein based nanoparticles[J]. Food Science, 2021, 42 (15): 285-292. doi: 10.7506/spkx1002-6630-20210127-297
|
[47] |
邹苑. 玉米醇溶蛋白-单宁酸复合颗粒对界面主导食品体系的调控研究[D]. 广州: 华南理工大学, 2018.
ZOU Y. Study on the regulation of zein tannic acid composite particles on interfacial dominant food system[D]. Guangzhou: South China University of Technology, 2018.
|
[48] |
隋晓楠, 黄国, 刘贵辰. 大豆蛋白质-植物多酚互作的研究进展[J]. 中国食品学报,2019,19(7):1−10. [SUI X N, HUANG G, LIU G C. Research progress of soybean protein plant polyphenol interaction[J]. Chinese Journal of Food Science,2019,19(7):1−10.
SUI X N, HUANG G, LIU G C. Research progress of soybean protein plant polyphenol interaction[J]. Chinese Journal of Food Science, 2019, 19 (7): 1-10.
|
[49] |
张慧芸, 吴静娟, 段续. 添加多酚对鲤鱼肌原纤维蛋白结构及膜性能的影响[J]. 食品科学,2016,37(5):35−40. [ZHANG H Y, WU J J, DUAN X. Effects of polyphenols on structure and membrane properties of carp myofibrillar protein[J]. Food Science,2016,37(5):35−40.
ZHANG HY, WU JJ, DUAN X. Effects of polyphenols on structure and membrane properties of carp myofibrillar protein [J]. Food Science, 2016, 37(5): 35-40.
|
[50] |
WANG Q, LI Y, SUN F, et al. Tannins improve dough mixing properties through affecting physicochemical and structural properties of wheat gluten proteins[J]. Food Research International, 2015, 69(1): 64-71.
|
[51] |
DENG J, LI M, ZHANG T, et al. Binding of proanthocyanidins to soybean (Glycine max) seed ferritin inhibiting protein degradation by proteasein vitro[J]. Food Research International,2011,44(1):33−38. doi: 10.1016/j.foodres.2010.11.020
|
[52] |
曹慧英, 柴媛, 段玉敏, 等. 单宁酸-玉米黄粉蛋白复合物抗氧化性研究[J]. 食品科技,2020,45(9):253−260. [CAO H Y, CHAI Y, DUAN Y M, et al. Antioxidant activity of tannic acid corn glutenin complex[J]. Food Science and Technology,2020,45(9):253−260.
CAO H Y, CHAI Y, DUAN Y M, et al. Antioxidant activity of tannic acid corn glutenin complex [J]. Food science and technology, 2020, 45 (9): 253-260.
|
[53] |
WANG Y H, LIN Y, YANG X Q. Foaming properties and air–water interfacial behavior of corn protein hydrolyzate–tannic acid complexes[J]. Journal of Food Science and Technology, 2019.
|
[54] |
LI R, DAI T, TAN Y, et al. Fabrication of pea protein-tannic acid complexes: Impact on formation, stability, and digestion of flaxseed oil emulsions[J]. Food Chemistry,2020,310(Apr.25):125828.1−125828.11.
|
[55] |
INTARASIRISAWAT R, BENJAKUL S, VISESSANGUAN W. Stability of emulsion containing skipjack roe protein hydrolysate modified by oxidised tannic acid[J]. Food Hydrocolloids,2014,41:146−155. doi: 10.1016/j.foodhyd.2014.03.034
|
[56] |
ZHONG Q, LI H, DENG S, et al. Tannic acid-induced changes in water distribution and protein structural properties of bacon during the curing process[J]. LWT,2020:110381.
|
[57] |
TO A, PEY B, GT C, et al. Polyphenol-protein interactions and changes in functional properties and digestibility[J]. Encyclopedia of Food Chemistry,2019:566−577.
|
[1] | JIANG Xiujie, ZHANG Jiayu, LI Ying, CHI Xiaoxing, SUN Dongbo, CAO Dongmei, ZHANG Dongjie. Effect of Rich GABA of Germinated Adzuki Bean on Intestinal Microflora in T2DM Mice[J]. Science and Technology of Food Industry, 2024, 45(12): 151-159. DOI: 10.13386/j.issn1002-0306.2023120301 |
[2] | CHENG Xiaoyang, LIAO Ming, HE Quanguang, MO Caifeng, HUANG Maokang, HUANG Meihua. Effects of Tetrastigma hemsleyanum Superfine Powder on Intestinal Microflora in Rats with Alcohol-Induced Liver Injury[J]. Science and Technology of Food Industry, 2023, 44(18): 415-424. DOI: 10.13386/j.issn1002-0306.2022090022 |
[3] | MU Rui, XIA Yunshi, ZHANG Yanting, BO Panpan, SUN Yinshi, WANG Zhitong, HUA Mei. Research Progress on the Chemical Composition and Intestinal Flora Regulation of Dietary Fiber from the Edible and Medicinal Plants[J]. Science and Technology of Food Industry, 2022, 43(18): 493-500. DOI: 10.13386/j.issn1002-0306.2021090216 |
[4] | ZHANG Zhixuan, HAN Jiaojiao, BAO Wei, WANG Ziyan, LIU Yan, HUO Chunheng, SU Xiurong. Regulation of Fermented Wax Gourd on Intestinal Microflora of Mice Infected with Staphylococcus aureus[J]. Science and Technology of Food Industry, 2021, 42(20): 149-156. DOI: 10.13386/j.issn1002-0306.2021040128 |
[5] | QI Yan, ZHOU Yan, ZHANG Xu-dong, WU Chun-zhen, TAn Jun, CHEN Dai-jie. Effect of Selenium-enriched Bifidobacterium longum DD98 on Diarrhea and Intestinal Microflora in Diarrhea Mice Induced by Irinotecan[J]. Science and Technology of Food Industry, 2020, 41(6): 292-298. DOI: 10.13386/j.issn1002-0306.2020.06.049 |
[6] | WANG Wen-ning, ZHANG Xiao-feng, HAN Ping, YU Fei, CAO Yang. Effects of Turnip on Intestinal Flora of Mice[J]. Science and Technology of Food Industry, 2018, 39(14): 287-291. DOI: 10.13386/j.issn1002-0306.2018.14.054 |
[7] | LI Jing, LV Xiao-ling, LV Dong-xue, WANG Meng-shu, ZHAO Sheng-nan, ZHAO Huan-jiao. Establishment of mice model for intestinal dysbacteria induced by cefixime dispersible tablets[J]. Science and Technology of Food Industry, 2017, (05): 361-365. DOI: 10.13386/j.issn1002-0306.2017.05.060 |
[8] | FU Jiao-jiao, PENG Zhi-yun, LIU Hai-quan, SUN Xiao-hong, PAN Ying-jie, ZHAO Yong. Changes of acidic electrolyzed water on intestinal microflora diversity of Penaeus vannawei during storage[J]. Science and Technology of Food Industry, 2015, (04): 344-347. DOI: 10.13386/j.issn1002-0306.2015.04.066 |
[9] | JIN Zhi-min, ZHANG Hong-bo, LIU Xia-wei, WANG Bo-hui, LUO Yu-long, YUAN Qian, DUAN Yan, TIAN Jian-jun, JIN Ye. Effects of supplementation of Lactobacillus plantarum with different dosage on fecal microbiota[J]. Science and Technology of Food Industry, 2014, (24): 342-345. DOI: 10.13386/j.issn1002-0306.2014.24.064 |
[10] | LIU Yun, LV Jiao, REN Wen-jin, Chen Hou-rong, LIU Xiong. Effect of the non-volatile parts of Zanthoxylum essential oil on intestinal health in rats[J]. Science and Technology of Food Industry, 2014, (09): 338-342. DOI: 10.13386/j.issn1002-0306.2014.09.065 |
1. |
王洪江,赵品贞,姬庆,张建忠,王兴伟,夏书芹,张晓鸣. 影响蚝油气味品质的关键风味化合物的研究. 食品与发酵工业. 2025(07): 309-315 .
![]() |