Citation: | HUANG Ping, YUAN Meilan, ZHAO Li, et al. Progress of Preparation and Physiological Activity of Fish Visceral Protein Hydrolysates[J]. Science and Technology of Food Industry, 2022, 43(18): 408−415. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070205. |
[1] |
《中国渔业统计年鉴》编辑委员会, 于秀娟, 徐乐俊, 吴反修主编. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020: 3.
Editorial Committee of China Fishery Statistics Yearbook, YU X J, XU L J, WU F X. China fishery statistics yearbook [M]. Beijing: China Agriculture Press, 2020: 3
|
[2] |
郑子懿, 李琳, 苏丹, 等. 鱼类内脏蛋白的开发和应用研究进展[J]. 食品科学,2019,40(17):295−301. [ZHENG Z Y, LI L, SU D, et al. Research progress in the development and application of fish visceral proteins[J]. Food Science,2019,40(17):295−301. doi: 10.7506/spkx1002-6630-20180923-248
ZHENG Z Y, LI L, SU D, et al. Research progress in the development and application of fish visceral proteins [J]. Food Science, 2019, 40 (17): 295-301. doi: 10.7506/spkx1002-6630-20180923-248
|
[3] |
HE S, FRANCO C, ZHANG W. Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP)[J]. Food Research International,2013,50(1):289−297. doi: 10.1016/j.foodres.2012.10.031
|
[4] |
叶彬清. 超临界CO2萃取秋刀鱼内脏油脂及卵磷脂氧化特性研究[D]. 上海: 上海海洋大学, 2015.
YE B Q. Study on oxidation characteristics of visceral oil and lecithin of saury by supercritical CO2 extraction [D]. Shanghai: Shanghai Ocean University, 2015.
|
[5] |
CHALAMAIAH M, JYOTHIRMAYI T, PRAKASH V, et al. Antiproliferative, ACE-inhibitory and functional properties of protein hydrolysates from rohu (Labeo rohita) roe (egg) prepared by gastrointestinal proteases[J]. Journal of Food Science and Technology,2015,52(12):8300−8307. doi: 10.1007/s13197-015-1969-y
|
[6] |
ENNAAS N, HAMMAMI R, BEAULIEU L, et al. Purification and characterization of four antibacterial peptides from protamex hydrolysate of Atlantic mackerel (Scomber scombrus) by-products[J]. Biochemical and Biophysical Research Communications,2015,462(3):195−200. doi: 10.1016/j.bbrc.2015.04.091
|
[7] |
MELGOSA R, TRIGUEROS E, SANZ M T, et al. Supercritical CO2 and subcritical water technologies for the production of bioactive extracts from sardine (Sardina pilchardus) waste[J]. The Journal of Supercritical Fluids,2020,164:104943. doi: 10.1016/j.supflu.2020.104943
|
[8] |
MOHANTY U, MAJUMDAR R K, MOHANTY B, et al. Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysates from visceral waste of Labeo rohita[J]. Journal of Food Science and Technology,2020(58):4349−4358.
|
[9] |
SHAFIEE S, GOLI M, KHOSHKHOO Z, et al. Optimization of hydrolysis conditions (temperature, time, and concentration of alkalase) of rainbow trout viscera using the response surface methodology[J]. Journal of Food Processing and Preservation,2021,45(5):e15456.
|
[10] |
BHASKAR N, BENILA T, RADHA C, et al. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease[J]. Bioresour Technol,2008,99:335−43. doi: 10.1016/j.biortech.2006.12.015
|
[11] |
李星, 赵利, 朱琳, 等. 鱼类内脏的综合利用与研究进展[J]. 粮食与饲料工业,2019(9):49−52,57. [LI X, ZHAO L, ZHU L, et al. Comprehensive utilization and research progress of fish viscera[J]. Grain and Feed Industry,2019(9):49−52,57.
LI X, ZHAO L, ZHU L, et al. Comprehensive utilization and research progress of fish viscera [J]. Grain and Feed Industry, 2019(9): 49-52, 57.
|
[12] |
KETNAWA S, BENJAKUL S, MARTÍNEZ-ALVAREZ O, et al. Threephase partitioning and proteins hydrolysis patterns of alkaline proteases derived from fish viscera[J]. Separation and Purification Technology,2014,132(3):174−181.
|
[13] |
ATHAILLAH Z A, PARK J W. Characterization of surimi slurries and their films derived from myofibrillar proteins with different extraction methods[J]. Food Bioscience,2016,15(1):118−125.
|
[14] |
GILDBERG A, DAHL R, MIKKELSEN H, et al. Peptones from Atlantic cod stomach as nitrogen sources in growth media to marine bacteria[J]. Journal of Aquatic Food Product Technology,2010,19(2):75−83. doi: 10.1080/10498850.2010.486523
|
[15] |
KETNAWA S, MARTÍNEZ-ALVAREZ O, BENJAKUL S, et al. Extraction and biochemical characterization of peptidases from giant catfish viscera by aqueous two-phase system[J]. Journal of Food Biochemistry,2015,39(4):429−438. doi: 10.1111/jfbc.12145
|
[16] |
张培, 申铉日, 李川, 等. 金鲳鱼内脏酸性蛋白酶的分离纯化及酶学性质研究[J]. 食品工业科技,2017,38(2):210−214. [ZHANG P, SHEN X R, LI C, et al. Isolation, purification and enzymatic properties of acidic protease from internal organs of pomfret[J]. Science and Technology of Food Industry,2017,38(2):210−214.
ZHANG P, SHEN X R, LI C, et al. Isolation, purification and enzymatic properties of acidic protease from internal organs of pomfret [J]. Food Industry Science and Technology, 2017, 38(2): 210-214.
|
[17] |
吴燕燕, 陶文斌, 李来好, 等. 宁德地区养殖大黄鱼形态组织结构与品质特性[J]. 水产学报,2019,43(6):1472−1482. [WU Y Y, TAO W B, LI LH, et al. Morphological structure and quality characteristics of cultured Pseudosciaena crocea in Ningde area[J]. Journal of Fisheries,2019,43(6):1472−1482.
WU Y Y, TAO W B, LI LH et al. Morphological structure and quality characteristics of cultured Pseudosciaena crocea in Ningde area [J]. Journal of Fisheries, 2019, 43(6): 1472-1482.
|
[18] |
周纷, 张艳霞, 张龙, 等. 冰鲜大黄鱼不同副产物中滋味成分差异分析[J]. 食品科学,2019,40(16):193−199. [ZHOU F, ZHANG Y X, ZHANG L, et al. Analysis of taste components in different by-products of chilled large yellow croaker[J]. Food Science,2019,40(16):193−199. doi: 10.7506/spkx1002-6630-20181008-034
ZHOU F, ZHANG Y X, ZHANG L, et al. Analysis of taste components in different by-products of chilled large yellow croaker [J]. Food Science, 2019, 40 (16): 193-199 doi: 10.7506/spkx1002-6630-20181008-034
|
[19] |
MUNEKATA P E S, PATEIRO M, DOMÍNGUEZ R, et al. Nutritional characterization of sea bass processing by-products[J]. Biomolecules,2020,10(2):232. doi: 10.3390/biom10020232
|
[20] |
郭休玉, 何兰. 草鱼内脏油乙醇提取及其脂肪酸组成分析[J]. 水产科技情报,2020,47(2):116−120. [GUO X Y, HE L. Ethanol extraction and fatty acid composition analysis of grass carpvisceral oil[J]. Aquatic Science and Technology Information,2020,47(2):116−120. doi: 10.16446/j.cnki.1001-1994.2020.02.010
GUO X Y, HE L. Ethanol extraction and fatty acid composition analysis of grass carpvisceral oil [J]. Aquatic Science and Technology Information, 2020, 47(2): 116-120. doi: 10.16446/j.cnki.1001-1994.2020.02.010
|
[21] |
杨晓军, 陆剑锋, 林琳, 等. 酶解斑点叉尾鮰内脏制备血管紧张素转化酶抑制产物[J]. 食品科学,2010,31(22):237−241. [YANG X J, LU J F, LIN L, et al. Preparation of angiotensin converting enzyme inhibitor by enzymatic hydrolysis of channel catfish viscera[J]. Food Science,2010,31(22):237−241.
YANG X J, LU J F, LIN L, et al. Preparation of angiotensin converting enzyme inhibitor by enzymatic hydrolysis of channel catfish viscera [J]. Food Science, 2010, 31 (22): 237-241.
|
[22] |
钟春梅. 鳡鱼油的制备研究[D]. 长沙: 长沙理工大学, 2014.
ZHONG C M. Study on preparation of shad oil [D]. Changsha: Changsha University of Technology, 2014.
|
[23] |
张金哲, 高倩倩. 鲤鱼内脏鱼油提取工艺的优化[J]. 肉类工业,2017(9):31−35. [ZHANG J Z, GAO Q Q. Optimization of extraction process of carp visceral fish oil[J]. Meat Industry,2017(9):31−35. doi: 10.3969/j.issn.1008-5467.2017.09.007
ZHANG J Z, GAO Q Q. Optimization of extraction process of carp visceral fish oil [J]. Meat Industry, 2017(9): 31-35. doi: 10.3969/j.issn.1008-5467.2017.09.007
|
[24] |
张秀娟. 章鱼内脏提取酸性蛋白酶的工艺研究[D]. 泉州: 华侨大学, 2016.
ZHANG X J. Study on extraction of acid protease from octopus viscera[D]. Quanzhou: Huaqiao University, 2016.
|
[25] |
苏永昌, 刘淑集, 王茵, 等. 鲍鱼内脏多糖的提取及其抗氧化活性研究[J]. 吉林农业,2010(10):170−171. [SU Y C, LIU S J, WANG Y, et al. Extraction and antioxidant activity of abalone visceral polysaccharide[J]. Jilin Agriculture,2010(10):170−171.
SU Y C, LIU S J, WANG Y, et al. Extraction and antioxidant activity of abalone visceral polysaccharide [J]. Jilin Agriculture, 2010(10): 170-171.
|
[26] |
KECHAOU E S, DUMAY J, DONNAY-MORENO C, et al. Enzymatic hydrolysis of cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) viscera using commercial proteases: Effects on lipid distribution and amino acid composition[J]. Journal of Bioscience and Bioengineering,2009,107(2):158−164. doi: 10.1016/j.jbiosc.2008.10.018
|
[27] |
SALWANEE S, AIDA W, MAMOT S, et al. Effects of enzyme concentration, temperature, pH and time on the degree of hydrolysis of protein extract from viscera of tuna (Euthynnus affinis) by using Alcalase[J]. Sains Malaysiana,2013,42(3):279−287.
|
[28] |
SLIZYTE R, MOZURAITYTE R, MARTINEZ-ALVAREZ O, et al. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones[J]. Process Biochemistry,2009,44(6):668−677. doi: 10.1016/j.procbio.2009.02.010
|
[29] |
白冬. 深海鲣鱼鱼油提取、精制与抗氧化活性研究[D]. 舟山: 浙江海洋大学, 2018.
BAI D. Study on extraction, purification and antioxidant activity of deep sea bonito oil [D]. Zhoushan: Zhejiang Ocean University, 2018.
|
[30] |
张晓頔, 戴志远. 鱼副产物蛋白水解物生物活性及应用研究进展[J]. 食品科学,2021,42(13):335−343. [ZHANG X Y, DAI Z Y. Research progress on bioactivity and application of fish by-product protein hydrolysate[J]. Food Science,2021,42(13):335−343. doi: 10.7506/spkx1002-6630-20200523-271
ZHANG X Y, DAI Z Y. Research progress on bioactivity and application of fish by-product protein hydrolysate [J]. Food Science, 2021, 42(13): 335-343. doi: 10.7506/spkx1002-6630-20200523-271
|
[31] |
黄浩, 赵聪, 陈贵堂. 食物源蛋白肽铁配合物的研究进展[J]. 中国食物与营养,2016,22(12):39−43. [HUANG H, ZHAO C, CHEN G T. Research progress of peptide iron complexes of food derived proteins[J]. China Food and Nutrition,2016,22(12):39−43. doi: 10.3969/j.issn.1006-9577.2016.12.010
HUANG H, ZHAO C, CHEN G T. Research progress of peptide iron complexes of food derived proteins [J]. China Food and Nutrition, 2016, 22(12): 39-43. doi: 10.3969/j.issn.1006-9577.2016.12.010
|
[32] |
张邵博, 靳冬武, 李明生. 蛋白水解物制备工艺及其在生物技术领域中的应用研究进展[J]. 天然产物研究与开发,2019,31(2):354−362. [ZHANG S B, JIN D W, LI M S. Research progress on preparation technology of protein hydrolysate and its application in biotechnology[J]. Research and Development of Natural Products,2019,31(2):354−362.
ZHANG S B, JIN D W, LI M S. Research progress on preparation technology of protein hydrolysate and its application in biotechnology [J]. Research and Development of Natural Products, 2019, 31(2): 354-362
|
[33] |
SILVEIRA A T, ADAM C, PAOLA P A, et al. Acute effect of fish protein hydrolysate supplementation on vascular function in healthy individuals[J]. Journal of Functional Foods,2018,26:250−255.
|
[34] |
孙一玮, 李雪, 刘春娥, 等. 响应面法优化双酶复合水解鳕鱼加工副产物的加工工艺[J]. 食品安全质量检测学报,2017,8(7):2768−2773. [SUN Y W, LI X, LIU C E, et al. Optimization of processing technology of COD processing by-products by double enzyme composite hydrolysis by response surface methodology[J]. Journal of Food Safety and Quality Inspection,2017,8(7):2768−2773. doi: 10.3969/j.issn.2095-0381.2017.07.059
SUN Y W, LI X, LIU C E, et al. Optimization of processing technology of COD processing by-products by double enzyme composite hydrolysis by response surface methodology [J]. Journal of Food Safety and Quality Inspection, 2017, 8(7): 2768-2773. doi: 10.3969/j.issn.2095-0381.2017.07.059
|
[35] |
林慧敏, 李仁伟, 张宾, 等. 鮟鱇鱼肝抗氧化肽的酶法制备及对羟自由基的清除作用[J]. 中国食品学报,2012,12(7):9−16. [LIN H M, LI R W, ZHANG B, et al. Enzymatic preparation of antioxidant peptides from Tilapia liver and their scavenging effect on hydroxyl free radicals[J]. Chinese Journal of Food,2012,12(7):9−16. doi: 10.3969/j.issn.1009-7848.2012.07.002
LIN H M, LI R W, ZHANG B, et al. Enzymatic preparation of antioxidant peptides from Tilapia liver and their scavenging effect on hydroxyl free radicals [J]. Chinese Journal of Food, 2012, 12(7): 9-16. doi: 10.3969/j.issn.1009-7848.2012.07.002
|
[36] |
褚晨艳, 颜子晨, 王缘, 等. 草鱼内脏蛋白的水解工艺研究[J]. 食品工程,2018(2):14−16, 21. [CHU C Y, YAN Z C, WANG Y, et al. Study on hydrolysis process of visceral protein of grass carp[J]. Food Engineering,2018(2):14−16, 21. doi: 10.3969/j.issn.1673-6044.2018.02.005
CHU C Y, YAN Z C, WANG Y, et al. Study on hydrolysis process of visceral protein of grass carp [J]. Food Engineering, 2018(2): 14-16, 21. doi: 10.3969/j.issn.1673-6044.2018.02.005
|
[37] |
李致瑜, 庄玮婧, 张宁宁, 等. Alcalase蛋白酶酶解大黄鱼内脏制备抗氧化肽[J]. 中国食品学报,2016,16(8):109−117. [LI Z Y, ZHUANG W J, ZHANG N N, et al. Preparation of antioxidant peptides by enzymatic hydrolysis of large yellow croaker viscera with Alcalase protease[J]. Chinese Journal of Food,2016,16(8):109−117. doi: 10.16429/j.1009-7848.2016.08.016
LI Z Y, ZHUANG W J, ZHANG N N, et al. Preparation of antioxidant peptides by enzymatic hydrolysis of large yellow croaker viscera with Alcalase protease[J]. Chinese Journal of Food, 2016, 16(8): 109-117. doi: 10.16429/j.1009-7848.2016.08.016
|
[38] |
梁杰, 汪少芸. 海参蛋白肽制备工艺优化及抗氧化性质[J]. 莆田学院学报,2016,23(2):67−71. [LIANG J, WANG S Y. Optimization of preparation process and antioxidant properties of sea cucumber protein peptides[J]. Journal of Putian University,2016,23(2):67−71.
LIANG J, WANG S Y. Optimization of preparation process and antioxidant properties of sea cucumber protein peptides [J]. Journal of Putian University, 2016, 23(2): 67-71.
|
[39] |
王靖麟, 王世博, 徐睿, 等. 鲟鱼肝酶解条件优化及酶解液对双歧杆菌增殖效果的研究[J]. 中国酿造,2020,39(4):152−158. [WANG J L, WANG S B, XU R, et al. Optimization of enzymatic hydrolysis conditions of sturgeon liver and effect of enzymatic hydrolysis solution on Bifidobacterium proliferation[J]. China Brewing,2020,39(4):152−158. doi: 10.11882/j.issn.0254-5071.2020.04.030
WANG J L, WANG S B, XU R, et al. Optimization of enzymatic hydrolysis conditions of sturgeon liver and effect of enzymatic hydrolysis solution on Bifidobacterium proliferation [J]. China Brewing, 2020, 39(4): 152-158. doi: 10.11882/j.issn.0254-5071.2020.04.030
|
[40] |
饶承冬. 鲟鱼肝脏铁蛋白分离纯化、结构表征及铁释放动力学初步研究[D]. 成都: 四川农业大学, 2019.
RAO C D. Isolation, purification, structural characterization and iron release kinetics of ferritin from sturgeon liver [D]. Chengdu: Sichuan Agricultural University, 2019.
|
[41] |
陈琳, 李秉钧, 冯俊荣. 利用大西洋鲑内源酶酶解加工废弃物制取抗氧化肽的研究[J]. 渔业现代化,2016,43(4):64−69. [CHEN L, LI B J, FENG J R. Study on preparation of antioxidant peptides from endogenous enzymatic processing waste of Atlantic salmon[J]. Fishery Modernization,2016,43(4):64−69. doi: 10.3969/j.issn.1007-9580.2016.04.012
CHEN L, LI B J, FENG J R. Study on Preparation of antioxidant peptides from endogenous enzymatic processing waste of Atlantic salmon[J]. Fishery Modernization, 2016, 43(4): 64-69. doi: 10.3969/j.issn.1007-9580.2016.04.012
|
[42] |
李娜, 周德庆, 刘楠, 等. 鳕鱼鱼鳔抗氧化肽制备工艺研究[J]. 渔业科学进展,2020,41(2):191−199. [LI N, ZHOU D Q, LIU N, et al. Study on preparation technology of antioxidant peptides from cod swim bladder[J]. Progress in Fishery Science,2020,41(2):191−199.
LI N, ZHOU D Q, LIU N, et al. Study on preparation technology of antioxidant peptides from cod swim bladder [J]. Progress in Fishery Science, 2020, 41(2): 191-199.
|
[43] |
GOMEZ L J, GOMEZ N A, ZAPATA J E, et al. In-vitro antioxidant capacity and cytoprotective/cytotoxic effects upon Caco-2 cells of red tilapia (Oreochromis spp.) viscera hydrolysates[J]. Food Research International,2019,120:52−61. doi: 10.1016/j.foodres.2019.02.029
|
[44] |
MOTAMEDZADEGAN A, DAVARNIAM B, ASADI G, et al. Optimization of enzymatic hydrolysis of yellowfin tuna Thunnus albacares viscera using Neutrase[J]. International Aquatic Research,2010(2):173−181.
|
[45] |
赵玉红, 孔保华, 张立钢. 酶解鲢鱼副产物中蛋白质制备含肽运动饮料[J]. 食品工业,2003(2):24−25. [ZHAO Y H, KONG B H, ZHANG L G. Preparation of peptide containing sports beverage from protein by-product of enzymatic hydrolysis of silver carp[J]. Food Industry,2003(2):24−25.
ZHAO Y H, KONG B H, ZHANG L G. Preparation of peptide containing sports beverage from protein by-product of enzymatic hydrolysis of silver carp[J]. Food Industry, 2003(2): 24-25.
|
[46] |
HORDUR G KRISTINSSON, BARBARA A R. Fish protein hydrolysates: Production, biochemical, and functional properties[J]. Critical Reviews in Food Science and Nutrition,2000,40(1):43−81. doi: 10.1080/10408690091189266
|
[47] |
李致瑜. 大黄鱼内脏抗氧化肽的制备、分离纯化及其理化性质研究[D]. 福州: 福建农林大学, 2016.
LI Z Y. Preparation, purification and physicochemical properties of antioxidant peptides from internal organs of Pseudosciaena crocea [D]. Fuzhou: Fujian Agriculture and Forestry University, 2016.
|
[48] |
HASSAN M A, XAVIER M, GUPTA S, et al. Antioxidant properties and instrumental quality characteristics of spray dried Pangasius visceral protein hydrolysate prepared by chemical and enzymatic methods[J]. Environmental Science and Pollution Research,2019,26:8875−8884. doi: 10.1007/s11356-019-04144-y
|
[49] |
PEZESHK S, OJAGH S M, REZAEI M, et al. Fractionation of protein hydrolysates of fish waste using membrane ultrafiltration: Investigation of antibacterial and antioxidant activities[J]. Probiotics and Antimicrobial Proteins,2019,11(3):1015−1022. doi: 10.1007/s12602-018-9483-y
|
[50] |
王思远, 张业辉, 黄利华, 等. 鱼蛋白肽的制备及其作为功能食品基料的应用[J]. 广州城市职业学院学报,2017,11(2):54−58. [WANG S Y, ZHANG Y H, HUANG L H, et al. Preparation of fish egg white peptide and its application as functional food base[J]. Journal of Guangzhou City Vocational College,2017,11(2):54−58. doi: 10.3969/j.issn.1674-0408.2017.02.012
WANG S Y, ZHANG Y H, HUANG L H, et al. Preparation of fish egg white peptide and its application as functional food base [J]. Journal of Guangzhou City Vocational College, 2017, 11(2): 54-58 doi: 10.3969/j.issn.1674-0408.2017.02.012
|
[51] |
WU R B, WU C L, LIU D, et al. Antioxidant and anti-freezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease[J]. Food Chemistry,2018,248:346−352. doi: 10.1016/j.foodchem.2017.12.035
|
[52] |
GANESH R J, NAZEER R A, SAMPATH KUMAR N S. Purification and identification of antioxidant peptide from black pomfret, Parastromateus niger (Bloch, 1975) viscera protein hydrolysate[J]. Food Science and Biotechnology,2011,20(4):1087−1094. doi: 10.1007/s10068-011-0147-x
|
[53] |
JE J Y, LEE K H, MI H L, et al. Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis[J]. Food Research International,2009,42(9):1266−1272. doi: 10.1016/j.foodres.2009.06.013
|
[54] |
BOUGATEF A, NEDIAR-ARROUME N, MANNI L, et al. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of (Sardinella aurita) by-products proteins[J]. Food Chemistry,2010,118(3):559−565. doi: 10.1016/j.foodchem.2009.05.021
|
[55] |
VILLAMIL O, H VAQUIRO, SOLANILLA J F. Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties[J]. Food Chemistry,2017,224:160−171. doi: 10.1016/j.foodchem.2016.12.057
|
[56] |
辛志宏, 马海乐, 吴守一. 食品蛋白质中降血压肽的功能与应用[J]. 食品与发酵工业,2003(8):84−87. [XIN Z H, MA H L, WU S Y. Function and application of antihypertensive peptides in food proteins[J]. Food and Fermentation Industry,2003(8):84−87. doi: 10.3321/j.issn:0253-990X.2003.08.019
XIN Z H, MA H L, WU S Y. Function and application of antihypertensive peptides in food proteins [J]. Food and Fermentation Industry, 2003(8): 84-87 doi: 10.3321/j.issn:0253-990X.2003.08.019
|
[57] |
AHN C B, JEON Y J, KIM Y T, et al. Angiotensin I converting enzyme (ACE) inhibitory peptides from salmon byproduct protein hydrolysate by alcalase hydrolysis[J]. Process Biochemistry,2012,47(12):2240−2245. doi: 10.1016/j.procbio.2012.08.019
|
[58] |
BOUGATEF A, NEDIAR-ARROUME N, RAVALLEC-PLE R, et al. Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases[J]. Food Chemistry,2008,111(2):350−356. doi: 10.1016/j.foodchem.2008.03.074
|
[59] |
窦鑫, 吴燕燕. 海水鱼内脏高值化利用的研究现状与发展趋势[J]. 食品工业科技,2021,42(13):372−378. [DOU X, WU Y Y. Research status and development trend of high-value utilization of marine fish viscera[J]. Science and Technology of Food Industry,2021,42(13):372−378.
DOU X, WU Y Y. Research status and development trend of high-value utilization of marine fish viscera[J]. Food Industry Science and Technology, 2021, 42(13): 372-378.
|
[60] |
RAHEEM N, STRANUS S K. Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions[J]. Frontiers in Microbiology,2019,10:2866. doi: 10.3389/fmicb.2019.02866
|
[61] |
齐志涛, 徐杨, 邹钧, 等. 水产动物抗菌肽研究进展[J]. 水产学报,2020,44(9):1572−1583. [QI Z T, XU Y, ZOU J, et al. Research progress of antimicrobial peptides in aquatic animals[J]. Journal of Fisheries,2020,44(9):1572−1583.
QI Z T, XU Y, ZOU J, et al. Research progress of antimicrobial peptides in aquatic animals [J]. Journal of Fisheries, 2020, 44(9): 1572-1583.
|
[62] |
邓梅, 王俊钢, 高阳, 等. 耐低温肠球菌Enterococcus sp. MB2-1产细菌素的生物学特性[J]. 食品科学,2013,34(19):170−175. [DENG M, WANG J G, GAO Y, et al. Biological characteristics of bacteriocin production by thermotolerant Enterococcus sp. MB2-1[J]. Food Science,2013,34(19):170−175. doi: 10.7506/spkx1002-6630-201319036
DENG M, WANG J G, GAO Y, et al. Biological characteristics of bacteriocin production by thermotolerant Enterococcus sp. MB2-1 [J]. Food Science, 2013, 34 (19): 170-175. doi: 10.7506/spkx1002-6630-201319036
|
[63] |
ROBERT M, ZATYLNY-GAUDIN C, FOURNIER V, et al. Molecular characterization of peptide fractions of a Tilapia (Oreochromis niloticus) by-product hydrolysate and in vitro evaluation of antibacterial activity[J]. Process Biochemistry,2015,50(3):487−492. doi: 10.1016/j.procbio.2014.12.022
|
[64] |
RONCEVIC T, PUIZINA J, TOSSI A. Antimicrobial peptides as anti-infective agents in pre-post-antibiotic era[J]. International Journal of Molecular Sciences,2019,20(22):5713. doi: 10.3390/ijms20225713
|
[65] |
HOU H, FAN Y, LI B, et al. Preparation of immunomodulatory hydrolysates from Alaska pollock frame[J]. Journal of the Science of Food and Agriculture,2012,92(15):3029−3038. doi: 10.1002/jsfa.5719
|
[66] |
姜速峰, 赵谋明, 江虹锐, 等. 罗非鱼皮胶原酶解物对HaCat细胞生长的影响[J]. 食品科学,2018,39(13):222−228. [JIANG S F, ZHAO M M, JIANG H R, et al. Effect of Tilapia skin collagenase hydrolysate on HaCat cell growth[J]. Food Science,2018,39(13):222−228. doi: 10.7506/spkx1002-6630-201813033
JIANG S F, ZHAO M M, JIANG H R, et al. Effect of Tilapia skin collagenase hydrolysate on HaCat cell growth [J]. Food Science, 2018, 39 (13): 222-228. doi: 10.7506/spkx1002-6630-201813033
|
[67] |
周先艳, 樊建, 唐远龙, 等. 罗非鱼皮胶原蛋白水解产物的体外抗氧化活性和体内抗衰老作用[J]. 食品科学,2016,37(15):221−226. [ZHOU X Y, FAN J, TANG Y L, et al. Antioxidant activity in vitro and anti-aging effectin vivo of collagen hydrolysate from Tilapia skin[J]. Food Science,2016,37(15):221−226. doi: 10.7506/spkx1002-6630-201615037
ZHOU X Y, FAN J, TANG Y L, et al. Antioxidant activity in vitro and anti-aging effect in vivo of collagen hydrolysate from Tilapia Skin [J]. Food Science, 2016, 37 (15): 221-226. doi: 10.7506/spkx1002-6630-201615037
|
[68] |
GOMEZ L J, GOMEZ N A, ZAPATA J E, et al. Optimization of the red Tilapia (Oreochromis spp.) viscera hydrolysis for obtaining iron-binding peptides and evaluation of in vitro iron bioavailability[J]. Foods, 2020, 9(7): 883.
|
[69] |
GIANNETTO A, ESPOSITO E, LANZA M, et al. Protein hydrolysates from anchovy (Engraulis encrasicolus) waste: In vitro and in vivo biological activities[J]. Mar Drugs,2020,18(2):86. doi: 10.3390/md18020086
|
[70] |
XU J J, LI Y Y, REGENSTEIN J, et al. In vitro and in vivo anti-oxidation and anti-fatigue effect of monkfish liver hydrolysate[J]. Food Bioscience,2017,18:9−14. doi: 10.1016/j.fbio.2017.03.002
|
1. |
韩军,王怡,张开屏,田建军. 罗伊氏粘液乳杆菌JBR3生物学特性分析及保护剂对其活力的影响. 食品工业科技. 2025(03): 166-177 .
![]() | |
2. |
邓忠惠,谢微. 罗汉果籽吸附氟离子效果的不同预测模型研究. 食品安全质量检测学报. 2024(06): 246-255 .
![]() | |
3. |
刘国祎,郭建章,陈星,王威强. 响应面法和人工神经网络对亚临界CO_2萃取红花籽油的建模与优化. 食品工业科技. 2024(10): 225-233 .
![]() | |
4. |
马诗瑜,何敬成,詹陆川,林伟杰,林思濠,胡小刚,卞晓岚. 基于人工神经网络算法的自拟清瘟方制备工艺优化探索. 中国药业. 2023(12): 56-62 .
![]() | |
5. |
赵清香,李大军,李亚萍,姜宇纯,李庚,袁永旭. 反向传播神经网络耦联遗传算法与响应面设计烤制鸽肉工艺优化. 中国调味品. 2023(10): 128-133 .
![]() | |
6. |
周雷进雨,马精阳,袁月明,李锦生,冯伟志,周丽娜. 干酪乳杆菌复合冻干保护剂工艺优化. 饲料工业. 2023(22): 86-93 .
![]() | |
7. |
渠一聪,张绍绒,罗理勇,曾亮. 基于人工神经网络耦合遗传算法(BP-GA)优化茶氨酸-葡萄糖美拉德反应的条件. 食品工业科技. 2023(24): 183-192 .
![]() | |
8. |
靳浩文,朱巧梅. 益生菌微胶囊技术对益生菌存活率影响的研究进展. 食品安全导刊. 2022(25): 181-183 .
![]() |