REN Xin, PENG Fei, CHEN Linan, et al. Optimization and Characterization of Microwave-assisted Enzymatic Extraction of Soluble Dietary Fiber from Anli Fruit Pomace[J]. Science and Technology of Food Industry, 2022, 43(7): 191−198. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070192.
Citation: REN Xin, PENG Fei, CHEN Linan, et al. Optimization and Characterization of Microwave-assisted Enzymatic Extraction of Soluble Dietary Fiber from Anli Fruit Pomace[J]. Science and Technology of Food Industry, 2022, 43(7): 191−198. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070192.

Optimization and Characterization of Microwave-assisted Enzymatic Extraction of Soluble Dietary Fiber from Anli Fruit Pomace

More Information
  • Received Date: July 18, 2021
  • Available Online: February 11, 2022
  • In order to improve the comprehensive utilization value of Anli resources, the extraction technology of soluble dietary fiber from Anli pomace was studied with a by-product of food processing in this work. On the basis of single factor test, response surface methodology was used to optimize the microwave-assisted composite enzymatic extraction process of soluble dietary fiber from Anli fruit pomace (ALDF). The structure of the prepared dietary fiber was characterized by scanning electron microscopy (SEM), fourier transform infrared (FT-IR) and high performance liquid chromatography (HPLC). The optimization results showed that when the microwave power was 370 W, the liquid-to-material ratio was 14.4:1 mL/g, the added amount of enzyme was 1.6%, and the pH was 7.0, the yield of ALDF was the highest level of 8.07%. The SEM showed that the ALDF had a spindle shape of about 5 μm in length, FT-IR showed that it had the characteristic peak of polysaccharide, and the molecular weight ranged from 5 to 2.076×104 kDa. The results showed that the microwave-assisted enzymatic method had a good extraction effect on the ALDF with a certain industrial application prospect. Therefore, this method could provide a theoretical basis for the high-value development and utilization of Anli fruit pomace.
  • [1]
    THEUWISSEN E, MENSINK R P. Water-soluble dietary fibers and cardiovascular disease[J]. Physiology & Behavior,2008,94(2):285−292.
    [2]
    李娜. 番茄皮可溶性膳食纤维的改性与表征[D]. 上海: 上海交通大学, 2018.

    LI N. The modification and characterization of soluble dietary fiber from tomato peels[D]. Shanghai: Shanghai Jiao Tong University, 2018.
    [3]
    廖樟华. 青稞嫩叶可溶性膳食纤维制备及生物活性研究[D]. 上海: 上海交通大学, 2019

    LIAO Z H. Preparation and bioactivities of soluble dietary fiber from young huskless barley leaves[D]. Shanghai: Shanghai Jiao Tong University, 2019.
    [4]
    GAO H, SONG R, LI Y, et al. Effects of oat fiber intervention on cognitive behavior in ldlr/mice modeling atherosclerosis by targeting the microbiome-gut-brain axis[J]. Journal of Agricultural and Food Chemistry,2020,68(49):14480−14491. doi: 10.1021/acs.jafc.0c05677
    [5]
    RAZA G S, MAUKONEN J, MAKINEN M, et al. Hypocholesterolemic effect of the lignin-rich insoluble pomace of brewer’s spent grain in mice fed a high-fat diet[J]. Journal of Agricultural and Food Chemistry,2018,67(4):1104−1114.
    [6]
    YANG L, LIN Q, HAN L, et al. Soy hull dietary fiber alleviates inflammation in BALB/C mice by modulating the gut microbiota and suppressing the TLR-4/NF-κB signaling pathway[J]. Food & Function,2020,11(7):5965−5975.
    [7]
    REYNOLDS A, MANN J, CUMMINGS J, et al. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses[J]. The Lancet,2019,393(10170):434−445. doi: 10.1016/S0140-6736(18)31809-9
    [8]
    ZHAO L, ZHANG F, DING X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science,2018,359(6380):1151−1156. doi: 10.1126/science.aao5774
    [9]
    LI Q, FANG X, CHEN H, et al. Retarding effect of dietary fibers from bamboo shoot (Phyllostachys edulis) in hyperlipidemic rats induced by a high-fat diet[J]. Food & Function,2021,12(10):4696−4706.
    [10]
    BENITEZ V, REBOLLO-HERNANZ M, HERNANZ S, et al. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization[J]. Food Research International,2019,122:105−113. doi: 10.1016/j.foodres.2019.04.002
    [11]
    MUÑOZ-CABREJAS A, LACLAUSTRA M, GUALLAR-CASTILLÓN P, et al. High-quality intake of carbohydrates is associated with lower prevalence of subclinical atherosclerosis in femoral arteries: The awhs study[J]. Clinical Nutrition,2021,40(6):3883−3889. doi: 10.1016/j.clnu.2021.04.049
    [12]
    LEÓN-GONZÁLEZ A J, JARA-PALACIOS M J, ABBAS M, et al. Role of epigenetic regulation on the induction of apoptosis in Jurkat leukemia cells by white grape pomace rich in phenolic compounds[J]. Food & Function,2017,8(11):4062−4069.
    [13]
    MACAGNA1N F T, DA SILVA L P, HECKTHEUER L H. Dietary fiber: The scientific search for an ideal definition and methodology of analysis, and its physiological importance as a carrier of bioactive compounds[J]. Food Research International,2016,85:144−154. doi: 10.1016/j.foodres.2016.04.032
    [14]
    SLAVIN J L. Position of the American dietetic association: Health implications of dietary fiber[J]. Journal of the American Dietetic Association,2008,108(10):1716−1731. doi: 10.1016/j.jada.2008.08.007
    [15]
    SOLIMAN G A. Dietary fiber, atherosclerosis, and cardiovascular disease[J]. Nutrients,2019,11(5):1155. doi: 10.3390/nu11051155
    [16]
    BRAHEM M, BORNARD I, RENARD C M G C, et al. Multiscale localization of procyanidins in ripe and overripe perry pears by light and transmission electron microscopy[J]. Journal of Agricultural and Food Chemistry,2020,68(33):8900−8906. doi: 10.1021/acs.jafc.0c02036
    [17]
    CHO J Y, KIM C M, LEE H J, et al. Caffeoyl triterpenes from pear (Pyrus pyrifolia Nakai) fruit peels and their antioxidative activities against oxidation of rat blood plasma[J]. Journal of Agricultural and Food Chemistry,2013,61(19):4563−4569. doi: 10.1021/jf400524b
    [18]
    孔明明. 安梨果酒的制备工艺优化[D]. 天津: 天津中医药大学, 2020

    KONG M M. Optimization of preparation rechnology of Anli (Pyrus ussuriensis Maxim. ) liquo[D]. Tianjin: Tianjin University of Traditional Chinese Medicine, 2020.
    [19]
    国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2018

    National Bureau of Statistics. China statistical yearbook[M]. Beijing: China Statistics Press, 2018.
    [20]
    赵纪伟. 不同安梨株系果实贮藏过程中品质变化研究[D]. 保定: 河北农业大学, 2011

    ZHAO J W. Studies on the change of fruit quality during storage in different lines of Pyrus ussuriensis ‘Anli’[D]. Baoding: Hebei Agricultural University, 2011.
    [21]
    MENG S, WANG W H, CAO L K. Soluble dietary fibers from black soybean hulls: Physical and enzymatic modification, structure, physical properties, and cholesterol binding capacity[J]. Journal of Food Science,2020,85:1668−1674. doi: 10.1111/1750-3841.15133
    [22]
    LIU Y L, ZHANG H B, YI C P, et al. Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment[J]. Food Chemistry,2021,342:128352. doi: 10.1016/j.foodchem.2020.128352
    [23]
    BAI Y, ZHAO J B, TAO S Y, et al. Effect of dietary fiber fermentation on short-chain fatty acid production and microbial composition in vitro [J]. Journal of the Science of Food and Agriculture 2020, 100: 4282−4291.
    [24]
    李艳. 不同酶法改性的马铃薯渣膳食纤维工艺条件及性能研究[D]. 呼和浩特: 内蒙古农业大学, 2019

    LI Y. Study on process conditions and properties of dietary fibers from potato pomace modified by different enzymatic method[D]. Hohhot: Inner Mongolia Agricultural University, 2019.
    [25]
    LE B, PHAM T N A, YANG S H. Prebiotic potential and anti-inflammatory activity of soluble polysaccharides obtained from soybean pomace[J]. Foods,2020,9:12.
    [26]
    林于洋. 酶-微波辅助协同提取心里美萝卜中有效成分研究[D]. 广州: 广东药科大学, 2020

    LIN Y Y. Study on synergistic extraction of multiple effective constituents from purple-heart radish by enzyme and microwave co-assisted extraction[D]. Guangzhou: Guangdong Pharmaceutical University, 2020.
    [27]
    巫永华, 刘梦虎, 孙悦, 等. 超声微波辅助酶法提取黑豆皮水溶性膳食纤维及理化特性分析[J]. 食品工业科技,2020,41(6):8−14. [WU Y H, LIU M H, SUN Y, et al. Ultrasonic-microwave assisted enzymatic extraction of water-soluble dietary fiber from black soybean hull and its physicochemical properties[J]. Science and Technology of Food Industry,2020,41(6):8−14.
    [28]
    申红林, 王凤玲. 灰树花多糖复合酶协同微波辅助提取工艺及抗氧化性研究[J]. 食品研究与开发,2020,41(22):124−131. [SHEN H L, WANG F L. Studies on compound enzymes synergistic microwave-assisted extraction process and antioxidant activity of Grifola frondose polysaccharide[J]. Food Research and Development,2020,41(22):124−131.
    [29]
    胡福田, 周红军, 徐华, 等. 微波预处理复合酶法浸提茶皂素工艺条件研究[J]. 广州化学,2018,43(5):18−23. [HU F T, ZHOU H J, XU H, et al. Study on extraction technology of tea saponin from microwave pretreatment camellia oleifera powder by complex enzyme[J]. Guangzhou Chemistry,2018,43(5):18−23.
    [30]
    李晓颍, 张文静, 刘宝丽, 等. 顶空固相微萃取-气相色谱-质谱联用法优化与‘安梨’花序挥发性成分分析[J]. 中国果树,2020(2):16−22. [LI X Y, ZHANG W J, LIU B L, et al. Optimization and analysis of aroma components in ‘Anli’ pear flower by headspace solid phase micro-extraction-gas chromatography-mass spectrometry[J]. China Fruits,2020(2):16−22.
    [31]
    梁文康, 苏平, 魏丹. 复合酶法提取黄秋葵可溶性膳食纤维的工艺优化及其理化特性、结构表征[J]. 食品工业科技,2020,41(17):199−205,218. [LIANG W K, SU P, WEI D. Optimization techniques for the extraction of soluble dietary fiber from okra with complex enzymes and its physicochemical properties and structure characterization[J]. Science and Technology of Food Industry,2020,41(17):199−205,218.
    [32]
    李施瑶, 代玲敏, 范宜杰, 等. 化学法提取红树莓果渣可溶性膳食纤维的工艺优化[J]. 食品工业科技,2019,40(19):180−186,193. [LI S Y, DAI L M, FAN Y J, et al. Optimization of extraction process of soluble dietary fiber from raspberry pomaces by chemical method[J]. Science and Technology of Food Industry,2019,40(19):180−186,193.
    [33]
    蒋纬, 王嘉莹, 何鸿. 不同提取方法对野木瓜膳食纤维提取及其抗氧化特性的影响研究[J]. 农产品加工,2019(24):28−31. [JIANG W, WANG J Y, HE H. Effects of different extraction methods on dietary fiber extraction and antioxidant properties of wild papaya[J]. Farm Products Processing,2019(24):28−31.
    [34]
    丁政宇, 张士凯, 何子杨, 等. 响应面优化黄精渣不溶性膳食纤维酶法提取工艺及其结构表征[J]. 食品工业科技,2021,42(20):157−163. [DING Z Y, ZHANG S K, HE Z Y, et al. Optimization of enzymatic extraction process of insoluble dietary fiber from Polygonatum sibiricum residue by response surface methodology and its characterization[J]. Science and Technology of Food Industry,2021,42(20):157−163.
    [35]
    王凌翌, 周利琴, 刘志国, 等. 联合酶法提取豆渣蛋白肽和可溶性膳食纤维[J]. 中国油脂,2021,46(6):114−118. [WANG L Y, ZHOU L Q, LIU Z G, et al. Extraction of protein peptides and soluble dietary fiber from soybean dregs by combined enzymatic method[J]. China Oils and Fats,2021,46(6):114−118.
    [36]
    陈法志, 翟敬华, 刘克华, 等. 响应面法优化微波提取牡丹果壳水溶性膳食纤维工艺[J]. 江汉大学学报(自然科学版),2020,48(6):48−55. [CHEN F Z, ZHAI J H, LIU K H, et al. Optimization of microwave-assisted extraction of water-soluble dietary fiber from peony husk by response surface methodology[J]. Journal of Jianghan University ( Nat. Sci. Ed. ),2020,48(6):48−55.
    [37]
    王娟, 康子悦, 肖金玲, 等. 超声-微波辅助酶法对小米SDF提取和物理性质的影响[J]. 包装工程,2020,41(7):25−32. [WANG J, KANG Z Y, XIAO J L, et al. Influence of ultrasonic-microwave assisted enzymatic method on extraction and physical properties of water-soluble dietary fiber from millet[J]. Packaging Engineering,2020,41(7):25−32.
    [38]
    GAN J P, PENG G Y, LIU S, et al. Comparison of structural, functional and in vitro digestion properties of bread incorporated with grapefruit peel soluble dietary fibers prepared by three microwave-assisted modifications[J]. Food Function,2020,11:6458−6466. doi: 10.1039/D0FO00760A
    [39]
    QU J L, HUANG P, ZHANG L, et al. Hepatoprotective effect of plant polysaccharides from natural resources: A review of the mechanisms and structure-activity relationship[J]. Int J Biol Macromol,2020,161:24−34. doi: 10.1016/j.ijbiomac.2020.05.196
    [40]
    HASHEMIFESHARAKI R, XANTHAKIS E, ALTINTAS Z, et al. Microwave-assisted extraction of polysaccharides from the marshmallow roots: Optimization, purification, structure, and bioactivity[J]. Carbohydrate Polymers,2020,240:116301. doi: 10.1016/j.carbpol.2020.116301
    [41]
    ZENG A Q, YANGR J, YU S H, et al. Porphyra A novel hypoglycemic agent: Polysaccharides from laver (spp.)[J]. Food Function,2020,11:9048−9056. doi: 10.1039/D0FO01195A
    [42]
    李晗, 范方宇, 戚建华, 等. 超声辅助酶法提取无籽刺梨渣膳食纤维及理化性质评价[J]. 食品科技,2021,46(4):194−201. [LI H, FAN F Y, QI J H, et al. Ultrasonic assisted enzymatic extraction of dietary fiber from rosa sterilis pomace and its physicochemical properties[J]. Food Science and Technology,2021,46(4):194−201.
    [43]
    徐新乐, 刘婷婷, 张闪闪, 等. 猴头菇高品质膳食纤维的制备及理化性质分析[J/OL]. 食品工业科技: 1−12[2021-09-11]

    XU X L, LIU T T, ZHANG S S, et al. Preparation, physicochemical properties of high-quality dietary fiber from Hericium erinaceus[J/OL]. Science and Technology of Food Industry: 1−12[2021-09-11].
    [44]
    郑璞帆, 张梅, 庞志豪, 等. 京津冀地区主栽梨品种果实外观特征、营养特性及香气物质分析[J]. 南开大学学报(自然科学版),2020,53(6):35−42. [ZHENG P F, ZHANG M, PANG Z H, et al. Analysis of fruit appearance, nutritional characteristics and aroma compounds of the main cultivars of pear (Pyrus L.) in Beijing-Tianjin-Hebei region[J]. Acta Scientiarum Naiuralium Unirversitatis Nankaiensis,2020,53(6):35−42.
    [45]
    孔明明. 安梨果酒的制备工艺优化[D]. 天津: 天津中医药大学, 2020

    KONG M M. Optimization of preparation technology of anli (Pyrus ussuriensis Maxim.) liquor[D]. Tianjin: Tianjin University of Traditional Chinese Medicine, 2020.
  • Cited by

    Periodical cited type(18)

    1. 赖海彬,高静. 淀粉-大分子复合物的制备方法、相互作用和功能特性. 食品科学. 2025(06): 285-294 .
    2. 石长波,徐朔,凌衍东,杨江江,金美琳,赵钜阳. 基于小角X射线散射技术测定淀粉结构研究进展. 中国调味品. 2025(03): 223-226+240 .
    3. 朱泳光,孟陆丽,陈鹏,陈婕,陈通,程缘,程谦伟. 葛根粉对鲜湿米粉品质的影响. 食品工业科技. 2025(10): 102-111 . 本站查看
    4. 史苗苗,张振,董雪娜,刘子阳,闫溢哲. 挤压山药淀粉-没食子酸复合物制备条件优化及其添加量对蛋糕品质的影响. 食品工业科技. 2025(11): 205-212 . 本站查看
    5. 张璇,赵文,高哲,李美娇,吴梦颖,周茜. 果胶与多酚相互作用机制及其对食品加工特性影响的研究进展. 食品工业科技. 2024(01): 378-386 . 本站查看
    6. 朱秀灵,戴清源,郭玉宝,李玉锋,周仁杰,朱森,林安琪. 基于Web of Science数据库的淀粉多酚相互作用研究的可视化分析. 西华大学学报(自然科学版). 2024(04): 137-148 .
    7. 宋靖郑,韩四海,刘建学,李佩艳,岳崇慧,罗登林. 阿魏酸协同韧化处理对马铃薯淀粉的改性作用. 中国食品学报. 2024(09): 51-59 .
    8. 高琦,周蕊杰,彭雪,王宁,薛友林. 果胶对淀粉理化性质和消化性的影响及其在食品中的应用研究进展. 中国粮油学报. 2024(12): 227-234 .
    9. 靳凤芳,牛丽亚,曾子聪,涂瑾,余莉莉,肖建辉. 不同种类淀粉与黑米粉复配体系的理化性质和分子结构特性研究. 粮油食品科技. 2023(02): 106-115 .
    10. 张丽蓉,王文苹,杨月蕊,许家喜,彭苑哲,王皎,闫鸿丽. 葛根芩连汤制法对相态基本特征的影响研究. 时珍国医国药. 2023(05): 1117-1121 .
    11. 范利君,王志鹏,宋安康,赵宇,郑月,阿尔新古丽·活生,王伟. 赤霞珠葡萄籽多酚稳定性和体外生物活性研究. 食品工业科技. 2023(16): 107-115 . 本站查看
    12. 赵盈,於天,郑志刚,陈位三,弓思涵,宋天宝,李先宽,於洪建. 多酚在植物中的分布及其生物活性研究进展. 中草药. 2023(17): 5825-5832 .
    13. 潘俊娴,吕杨俊,蒋玉兰,叶丽伟,王霈菲,张士康,朱跃进. 龙游黄茶茶粉对大米淀粉理化特性的影响. 中国茶叶加工. 2023(03): 52-56 .
    14. 潘俊娴,吕杨俊,蒋玉兰,叶丽伟,王霈菲,朱跃进,张士康. 茶多酚对大米淀粉理化特性的影响. 中国茶叶加工. 2023(03): 45-51 .
    15. 杨春华,齐文,贺殷媛,张娜. 淀粉老化检测技术研究进展. 食品安全质量检测学报. 2023(19): 155-162 .
    16. 余科,孔令辉,张瑞,吴慕慈,胡依黎,何静仁. 不同分子量茶渣提取物对马铃薯淀粉糊化特性的影响. 食品工业科技. 2023(22): 76-83 . 本站查看
    17. 李舒玥,吴昊怡,易阳,孙莹,彭凯迪,江雪玉. 多酚强化莲藕营养粉的制备与食用品质. 武汉轻工大学学报. 2023(05): 1-10 .
    18. 陈丽芬,杨发福. 融合民间小吃的化学教学案例开发——以“探秘绿豆凉粉中的氢键”为例. 化学教与学. 2023(16): 38-42+66 .

    Other cited types(14)

Catalog

    Article Metrics

    Article views (236) PDF downloads (20) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return