YAN Sun’an, SHI Mengzhu, LIN Xiangxin, et al. Principal Component Analysis and Cluster Analysis for Evaluating Amino Acid of Different Table Grapes (Vitis vinifera L.) Varieties[J]. Science and Technology of Food Industry, 2022, 43(6): 372−379. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070090.
Citation: YAN Sun’an, SHI Mengzhu, LIN Xiangxin, et al. Principal Component Analysis and Cluster Analysis for Evaluating Amino Acid of Different Table Grapes (Vitis vinifera L.) Varieties[J]. Science and Technology of Food Industry, 2022, 43(6): 372−379. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070090.

Principal Component Analysis and Cluster Analysis for Evaluating Amino Acid of Different Table Grapes (Vitis vinifera L.) Varieties

More Information
  • Received Date: July 06, 2021
  • Available Online: January 12, 2022
  • Objective: In order to find out the differences in the content, composition characteristics and nutritional value of amino acid in different fresh grape varieties. Method: The amino acid type and content were detected by amino acid automatic analyzer. Based on these, their amino acid nutrition were compared to each other using principal component analysis and cluster analysis. Results: 31 table grapes contained more than 18 kinds of amino acid. Among these, the contents of essential amino acid, child essential amino acid, medical amino acid, branch amino acid, flavoring and coloring amino acid, antibacterial amino acid, and primary amino acid were 51.03~111.78, 33.29~138.66, 113.75~341.64, 21.89~49.19, 95.91~316.24, 15.23~31.39 and 113.82~468.34 mg/100 g, respectively. Three principal components were constructed by factor loading. The corresponding contribution ratio was 80.644%. Listed by the amino acid nutrition, the top 3 table grapes were ‘Zaozhongzao’, ‘Yubo No.2’, and ‘Gold Finger’. The last 3 table grapes were ‘Beauty Woodcutter’, ‘Purple Jade’, and ‘Miguang’. The results of cluster analysis and principal component analysis were consistent, indicating that there were significant differences in amino acid nutrition of different fresh grapes. Conclusion: The table grape with good amino acid nutrition in these 31 varieties were ‘Zaozhongzao’, ‘Yubo No.2’, ‘Gold Finger’, ‘Summer black’, ‘Hutai No.8’ and ‘Jasmine’.
  • [1]
    刘欢, 何文兵, 李乔, 等. 通化葡萄产区主栽4个品种品质的比较[J]. 食品科学,2017,38(17):107−113. [LIU H, HE W B, LI Q, et al. Comparison of quality traits of four major grape cultivars planted in Tonghua[J]. Food Science,2017,38(17):107−113. doi: 10.7506/spkx1002-6630-201717018
    [2]
    江雨. 中国野生葡萄果实品质评价和主要物质组分研究[D]. 西安: 西北农林科技大学, 2016

    JIANG Y. Evaluation of fruit quality and study on main substance components of wild grape in China[D]. Xi’an: Northwest Agricultural and Forestry University of Science and Technology, 2016.
    [3]
    IANNONE M, MARE R, PAOLINO D, et al. Characterization and in vitro anticancer properties of chitosan-microencapsulated flavan-3-ols-rich grape seed extracts[J]. International Journal of Biological Macromolecules,2017,104(A):1039−1045.
    [4]
    孟聚星, 张国海, 樊秀彩, 等. 中国葡萄野生种的分布调查分析[J]. 植物遗传资源学报,2020,21(6):1539−1548. [MENG J X, ZHANG G H, FAN X C, et al. Studies on distribution of wild grapes in China[J]. Journal of Plant Genetic Resources,2020,21(6):1539−1548.
    [5]
    颜孙安, 姚清华, 林香信, 等. 成熟度对‘红地球’葡萄氨基酸营养价值的影响[J]. 果树学报,2021,38(1):64−72. [YAN S A, YAO Q H, LIN X X, et al. Effects of maturity on amino acid nutrition of red globe grape (Vitis vinifera L.)[J]. Journal of Fruit Science,2021,38(1):64−72.
    [6]
    JOGAIAH S, OULKAR D P, BANERJEE K, et al. Amino acid composition of major table and wine grape cultivars growing under semiarid climate in India[J]. Horticulture Environment & Biotechnology,2010,51(3):226−234.
    [7]
    付涛, 吴月燕, 王立如, 等. 鄞红葡萄及其突变体果实氨基酸和香气分析[J]. 核农学报,2014,28(11):2038−2050. [FU T, WU Y Y, WANG L R, et al. Amino acids and aroma analysis of ‘Yinhong’ and its mutants of Vitis vinifera L doi: 10.11869/j.issn.100-8551.2014.11.2038

    J]. Journal of Nuclear Agricultural Sciences,2014,28(11):2038−2050. doi: 10.11869/j.issn.100-8551.2014.11.2038
    [8]
    于惠春, 高菁, 李飞飞, 等. 烟台产区6种酿酒白葡萄中氨基酸的测定[J]. 江西科学,2016,34(2):173−177. [YU H C, GAO J, LI F F, et al. Determination of amino acids in different varieties of white wine grapes[J]. Jiangxi Science,2016,34(2):173−177.
    [9]
    张红兵, 贾来喜, 李潞. SPSS宝典[M]. 北京: 电子工业出版社, 2007: 327−375, 388−398

    ZHANG H B, JIA L X, LI L. SPSS encyclopedia[M]. Beijing: Publishing House of Electronics Industry, 2007: 327−375, 388−398.
    [10]
    王婧, 李小平, 刘柳, 等. 燕麦等五种谷物的氨基酸含量综合评价[J]. 麦类作物学报,2019,39(4):438−445. [WANG J, LI X P, LIU L, et al. Principal component analysis and comprehensive evaluation of amino acids of oat and other four crops[J]. Journal of Triticeae Crops,2019,39(4):438−445. doi: 10.7606/j.issn.1009-1041.2019.04.09
    [11]
    刘伟, 张群, 李志坚, 等. 不同品种黄花菜游离氨基酸组成的主要成分分析及聚类分析[J]. 食品科学,2019,40(10):243−250. [LIU W, ZHANG Q, LI Z J, et al. Principal component analysis and cluster analysis for evaluating free amino acids of different cultivars of daylily buds[J]. Food Science,2019,40(10):243−250. doi: 10.7506/spkx1002-6630-20180523-336
    [12]
    杨林, 池福敏, 冯建英, 等. 西藏林芝地区五种野生食用菌氨基酸主成分分析与综合评价[J]. 食品工业科技,2019,40(10):243−250. [YANG L, CHI F M, FENG J Y, et al. Principal component analysis and comprehensive evaluation of amino acids of five wild edible mushrooms collected from Nyingchi region of Tibet[J]. Science and Technology of Food Industry,2019,40(10):243−250.
    [13]
    蒋滢. 氨基酸的应用[M]. 北京: 世界图书出版公司, 1996: 1−163

    JIANG Y. The application of amino acids[M]. Beijing: World Book Inc, 1996: 1−163.
    [14]
    颜孙安, 林香信, 钱爱萍, 等. 化学分析法的理想参考蛋白模式及其化学生物价研究[J]. 中国农学通报,2010,26(23):101−107. [YAN S A, LIN X X, QIAN A P, et al. The study on the ideal reference protein model of chemical analysis and biological value[J]. Chinese Agricultural Science Bulletin,2010,26(23):101−107.
    [15]
    GANOPOULOS I, MOYSIADIS T, XANTHOPOULOU A, et al. Morpho-physiological diversity in the collection of sour cherry (Prunus cerasus) cultivars of the fruit Genebank in Naoussa, Greece using multivariate analysis[J]. Scientia Horticulturae,2016,207:225−232. doi: 10.1016/j.scienta.2016.05.018
    [16]
    FRANCINA A, ROMEO S, CIFELLI M, et al. 1HNMR and PCA-based analysis revealed variety dependent changes in phenolic contents of apple fruit after drying[J]. Food Chemistry,2017,221:206−211.
    [17]
    公丽艳, 孟宪军, 刘乃侨, 等. 基于主成分与聚类分析的苹果加工品质评价[J]. 农业工程学报,2014,30(13):276−285. [GONG L Y, MENG X J, LIU N Q, et al. Evaluation of apple quality based on principal component and hierarchical cluster analysis[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(13):276−285. doi: 10.3969/j.issn.1002-6819.2014.13.034
    [18]
    颜孙安, 钱爱萍, 姚清华, 等. 闽产李果实氨基酸组成及其营养分析[J]. 热带亚热带植物学报,2012,20(6):571−577. [YAN S A, QIAN A P, YO Q H, et al. Amino acid composition and nutrition analysis of plum fruits in Fujian province[J]. Journal of Tropical and Subtropical Botany,2012,20(6):571−577. doi: 10.3969/j.issn.1005-3395.2012.06.006
    [19]
    李萧, 夏秋琦, 曾广琳, 等. 锡兰橄榄主要营养成分与酚酸类组成分析评价[J]. 热带作物学报,2017,38(7):1337−1344. [LI X, XIA Q Q, ZENG G L, et al. Analysis and evaluation of primary nutritional composition and polyphenols constituents from Elaeocarpus serratus L doi: 10.3969/j.issn.1000-2561.2017.07.025

    J]. Chinese Journal of Tropical Crops,2017,38(7):1337−1344. doi: 10.3969/j.issn.1000-2561.2017.07.025
    [20]
    王颖倩, 朱科学, 张彦军, 等. 不同品系菠萝蜜化学成分比较与营养综合评价[J]. 热带农业科学,2017,37(8):46−53. [WANG Y Q, ZHU K X, ZHANG Y J, et al. Comparison of chemical constituents and nutritional evaluation of different lines of jackfruit[J]. Chinese Journal of Tropical Crops,2017,37(8):46−53.
    [21]
    夏宏义, 杨勇, 张永芳, 等. 阳丰甜柿果实营养成分和氨基酸组成分析[J]. 黑龙江农业科学,2015(1):116−120. [XIA H Y, YANG Y, ZHANG Y F, et al. Analysis on nutritive compositions, amino acid content of Diospyros kaki cv. Youhou fruit[J]. Heilongjiang Agriculture Science,2015(1):116−120.
    [22]
    孙锐, 孙蕾, 赵登超, 等. 不同石榴品种果实的营养成分比较分析[J]. 食品工业科技,2015,36(2):358−361. [SUN R, SUN L, ZHAO D C, et al. Comparative analysis of nutritional ingredients in different kinds of pomegranate fruits[J]. Science and Technology of Food Industry,2015,36(2):358−361.
    [23]
    林陶, 李婕羚, 付远洪, 等. 无籽刺梨与野生刺梨果实的氨基酸含量及组成[J]. 山东化工,2017,46(18):76−79. [LIN T, LI J L, FU Y H, et al. Determination of amino acids in Rosa sterilis and wild Rosa roxburghii by HPLC[J]. Shandong Chemistry Industry,2017,46(18):76−79. doi: 10.3969/j.issn.1008-021X.2017.18.028
    [24]
    何莎莎. 不同类型柑橘果实氨基酸组成分析及“三度”法营养价值评价[D]. 重庆: 西南大学, 2018

    HE S S. Analysis of amino acid composition of different types of citrus fruits and evaluation of nutritional value by “three degree” method[D]. Chongqing: Southwest University, 2018.
    [25]
    彭颖, 周如金. 不同品种荔枝果汁氨基酸和糖类的测定与分析[J]. 中国食品添加剂,2017,4:173−177. [PENG Y, ZHOU R J. Determination and analysis of amino acids and sugars in different types of litchi juice[J]. China Food Additives,2017,4:173−177. doi: 10.3969/j.issn.1006-2513.2017.04.027
    [26]
    郭爽, 李斌, 刘璇, 等. 基于氨基酸含量的苹果浊汁品种与产地差异性分析[J]. 中国食品学报,2019,19(11):230−238. [GUO S, LI B, LIU X, et al. Comparative analysis of nutritional ingredients in different kinds of pomegranate fruits[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(11):230−238.
    [27]
    邓英毅, 何嘉楠, 胡国瑞, 等. 不同红肉火龙果品种的果实品质和氨基酸组成比较[J]. 中国南方果树,2020,49(2):61−64,70. [DENG Y Y, HE J N, HU G R, et al. Comparison of fruit quality and amino acid composition of different pitaya varieties[J]. South China Fruits,2020,49(2):61−64,70.
    [28]
    张春苗, 高永生, 朱丽云, 等. ‘东魁’杨梅鲜果与干果的风味比较分析[J]. 果树学报,2016,33(2):224−232. [ZHANG C M, GAO Y S, ZHU L Y, et al. Flavour differences between fresh and dried fruit of Mytica rubra ‘Dong-kui’[J]. J Fruits Science,2016,33(2):224−232.
    [29]
    章希娟, 陈秀萍, 许玲, 等. 31份枇杷种质资源果实的蛋白质营养评价[J]. 福建农业学报,2016,31(3):242−249. [ZHANG X J, CHEN X P, XU L, et al. Nutritional evaluation on proteins in fruits of 31 loquat genotypes[J]. Fujian Journal of Agricultural Sciences,2016,31(3):242−249.
    [30]
    周苏, 刘磊. 冬虫夏草中氨基酸含量分析[J]. 现代食品,2017(5):116−118. [ZHOU S, LIU L. Analysis of amino acids in Cordyceps sinensis[J]. Modern Food,2017(5):116−118.
    [31]
    唐晓雷, 何慧楠, 赵悦名, 等. 不同等级的梅花鹿鹿茸药材中氨基酸含量的柱前衍生—高效液相色谱法测定[J]. 时珍国医国药,2019,30(3):560−563. [TANG X L, HE H N, ZHAO Y M, et al. Pre-column derivatization-HPLC was used to determine amino acid levels in different grade of sika deer antler[J]. Lishizhen Medicine and Materia Medica Research,2019,30(3):560−563.
    [32]
    李钦俊, 谭亮, 杲秀珍, 等. 柴达木野生黑果枸杞营养成分分析与比较[J]. 食品工业科技,2019,40(18):273−281, 288. [LI Q J, TAN L, GAO X Z, et al. Analysis and comparison of nutritional compositions in wild Lycium ruthenicum from Qaidam[J]. Science and Technology of Food Industry,2019,40(18):273−281, 288.
    [33]
    陈丽雪, 曲迪, 华梅, 等. 不同年生和不同部位人参样品有效成分的比较[J]. 食品科学,2019,40(8):124−129. [CHEN L X, QU D, HUA M, et al. A comparative study of effective components in ginseng samples from different parts and ages[J]. Food Science,2019,40(8):124−129. doi: 10.7506/spkx1002-6630-20180320-260
    [34]
    GULNISA K, MUHTAR Z, ZHANG D Y, et al. Factor analysis and comprehensive evaluation of fruit quality traits of introduced fig cultivars[J]. Food Science,2018,39(1):99−104.
  • Related Articles

    [1]ZHANG Xiao-jiao, SUN Li-quan, LUO Ai-qin, YANG Xue-dong, ZHANG Rui. Optimization of Extraction Technology of Water-soluble Flavonoids and Total Polysaccharides from Aurea helianthus Flower by Response Surface Methodology[J]. Science and Technology of Food Industry, 2019, 40(15): 135-142. DOI: 10.13386/j.issn1002-0306.2019.15.022
    [2]YAN Meng-ya, LIU Bao-lin, LIU Zhi-dong, CHEN Xue-zhong, HUANG hong-liang, QU Ying-hong. Optimization of hydrolysis process on solubility of protein from Antarctic krill(Euphausia superb)by response surface methodology[J]. Science and Technology of Food Industry, 2018, 39(5): 151-156.
    [3]LIANG Xiao-juan, CHEN Jing, ZHANG Wen-zhe, WU Yu-jiao, YUE Li-xin, ZHANG Ji. Optimization of lily jelly formulation by response surface methodology[J]. Science and Technology of Food Industry, 2018, 39(1): 221-226,234. DOI: 10.13386/j.issn1002-0306.2018.01.040
    [4]SHU Ying, AO Ran, SONG Jia, REN Hui, DING Na, RONG Ping, ZHANG Zhi-sheng. Optimization of extraction condition of acid-soluble collagen from cod skin by response surface methodology[J]. Science and Technology of Food Industry, 2015, (24): 269-272. DOI: 10.13386/j.issn1002-0306.2015.24.050
    [5]LU Zhong-ying, YAO Yuan-yong, CHEN Shi-xue, XING Ming-ming, XIE Yong. Optimizing microwave extraction technology of soluble dietary from camellia cakes with response surface methodology[J]. Science and Technology of Food Industry, 2015, (20): 289-292. DOI: 10.13386/j.issn1002-0306.2015.20.051
    [6]ZHOU Jing-li, ZHANG Kun-sheng, REN Yun-xia. Optimization of salt-soluble protein from oratoria by response surface methodology[J]. Science and Technology of Food Industry, 2015, (16): 279-283. DOI: 10.13386/j.issn1002-0306.2015.16.048
    [7]ZHU Feng-xia, LIANG Ying, LIN Qin-lu, DENG Xue-liang, LIU Ying, LU Qian, WANG Rong. Optimization of progress for water soluble dietary fiber from rice bran with ultrasonics-enzymatic method by response surface methodology[J]. Science and Technology of Food Industry, 2015, (14): 194-198. DOI: 10.13386/j.issn1002-0306.2015.14.032
    [8]JIAN Hua-jun, ZHANG Hai-rui, HUANG Xiao-lin, CHEN Jie. Effects of alkaline-heating treatment on the solubility, thermal aggregation and rheological property of soybean protein isolate[J]. Science and Technology of Food Industry, 2014, (16): 101-104. DOI: 10.13386/j.issn1002-0306.2014.16.013
    [9]Optimization of extraction conditions of duck breast salt-soluble protein based on response surface methodology[J]. Science and Technology of Food Industry, 2013, (14): 259-262. DOI: 10.13386/j.issn1002-0306.2013.14.073
    [10]Phosphorylation for improvement of zein solubility[J]. Science and Technology of Food Industry, 2012, (24): 106-108. DOI: 10.13386/j.issn1002-0306.2012.24.084

Catalog

    Article Metrics

    Article views (322) PDF downloads (47) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return