Citation: | YAO Mingjing, YANG Yang, FAN Jing, et al. Advance on Nattokinase Microbial Production and Physiological Function[J]. Science and Technology of Food Industry, 2022, 43(14): 435−444. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070016. |
[1] |
MOZAFFARIAN D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review [J]. Circulation, 2016, 133(2): Circulationaha. 115.018585.
|
[2] |
SUMI H, HAMADA H, TSUSHIMA H, et al. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto; a typical and popular soybean food in the Japanese diet[J]. Experientia,1987,43(10):1110−1111. doi: 10.1007/BF01956052
|
[3] |
DABBAGH F, NEGAHDARIPOUR M, BERENJIAN A, et al. Nattokinase: Production and application[J]. Applied Microbiology and Biotechnology,2014,98(22):9199−9206. doi: 10.1007/s00253-014-6135-3
|
[4] |
FUJITA M, NOMURA K, HONG K, et al. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan[J]. Biochemical and Biophysical Research Communications,1993,197(3):1340−1347. doi: 10.1006/bbrc.1993.2624
|
[5] |
NAKAMURA T, YAMAGATA Y, ICHISHIMA E. Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto)[J]. Bioscience Biotechnology & Biochemistry,1992,56(11):1869−1871.
|
[6] |
JENSEN G, LENNINGER M, ERO M P, et al. Consumption of nattokinase is associated with reduced blood pressure and von willebrand factor, a cardiovascular risk marker: Results from a randomized, double-blind, placebo-controlled, multicenter North American clinical trial[J]. Integrated Blood Pressure Control,2016,9:95−104. doi: 10.2147/IBPC.S99553
|
[7] |
KIM J Y, GUM S N, PAIK J K, et al. Effects of nattokinase on blood pressure: A randomized, controlled trial[J]. Hypertension Research,2008,31(8):1583−1588. doi: 10.1291/hypres.31.1583
|
[8] |
PARK K J, KANG J I, KIM T S, et al. The antithrombotic and fibrinolytic effect of natto in hypercholesterolemia rats[J]. Preventive Nutrition and Food Science,2012,17(1):78−82. doi: 10.3746/pnf.2012.17.1.078
|
[9] |
KANG S J, LIM Y, KIM A J. Korean red ginseng combined with nattokinase ameliorates dyslipidemia and the area of aortic plaques in high cholesterol-diet fed rabbits[J]. Food Science & Biotechnology,2014,23(1):283−287.
|
[10] |
TAKABAYASHI T, IMOTO Y, SAKASHITA M, et al. Nattokinase, profibrinolytic enzyme, effectively shrinks the nasal polyp tissue and decreases viscosity of mucus[J]. Allergology International: Official Journal of the Japanese Society of Allergology,2017,66(4):594−602. doi: 10.1016/j.alit.2017.03.007
|
[11] |
WENG Y, YAO J, SPARKS S, et al. Nattokinase: An oral antithrombotic agent for the prevention of cardiovascular disease[J]. International Journal of Molecular Sciences,2017,18(3):523. doi: 10.3390/ijms18030523
|
[12] |
PENG Y, YANG X, ZHANG Y. Microbial fibrinolytic enzymes: An overview of source, production, properties, and thrombolytic activity in vivo[J]. Applied Microbiology and Biotechnology,2005,69(2):126−132. doi: 10.1007/s00253-005-0159-7
|
[13] |
YANAGISAWA Y, CHATAKE T, CHIBA-KAMOSHIDA K, et al. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto[J]. Acta Crystallographica Section F Structural Biology and Crystallization Communications,2010,66(12):1670−1673. doi: 10.1107/S1744309110043137
|
[14] |
LIU Z, ZHAO H, HAN L, et al. Improvement of the acid resistance, catalytic efficiency, and thermostability of nattokinase by multisite-directed mutagenesis[J]. Biotechnology and Bioengineering,2019,116(8):1833−1843. doi: 10.1002/bit.26983
|
[15] |
ZHENG Z L, ZUO Z Y, LIU Z G, et al. Construction of a 3D model of nattokinase, a novel fibrinolytic enzyme from Bacillus natto: A novel nucleophilic catalytic mechanism for nattokinase[J]. Journal of Molecular Graphics & Modelling,2005,23(4):373−380.
|
[16] |
ZHENG Z L, YE M Q, ZUO Z Y, et al. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation[J]. Biochemical Journal,2006,395(3):509−515. doi: 10.1042/BJ20050772
|
[17] |
WU S, FENG C, ZHONG J, et al. Roles of S3 site residues of nattokinase on its activity and substrate specificity[J]. Journal of Biochemistry,2007,142(3):357−364. doi: 10.1093/jb/mvm142
|
[18] |
MAHAJAN P M, NAYAK S, LELE S S. Fibrinolytic enzyme from newly isolated marine bacterium Bacillus subtilis ICTF-1: Media optimization, purification and characterization[J]. Journal of Bioscience and Bioengineering,2012,113(3):307−314. doi: 10.1016/j.jbiosc.2011.10.023
|
[19] |
CHANDRASEKARAN S D, VAITHILINGAM M, SHANKER R, et al. Exploring the in vitro thrombolytic activity of nattokinase from a new strain Pseudomonas aeruginosa CMSS[J]. Jundishapur Journal of Microbiology,2015,8(10):e23567.
|
[20] |
WEI X, LUO M, XU L, et al. Production of fibrinolytic enzyme from Bacillus amyloliquefaciens by fermentation of chickpeas, with the evaluation of the anticoagulant and antioxidant properties of chickpeas[J]. Journal of Agricultural & Food Chemistry,2011,59(8):3957−3963.
|
[21] |
PENG Y, HUANG Q, ZHANG R H, et al. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food[J]. Comparative Biochemistry and Physiology. B: Biochemistry and Molecular Biology,2003,134(1):45−52. doi: 10.1016/S1096-4959(02)00183-5
|
[22] |
WANG C T, JI B P, LI B, et al. Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi [J]. Journal of Industrial Microbiology and Biotechnology, 2006, 33(9): 750-758.
|
[23] |
KIM W. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang[J]. Applied & Environmental Microbiology,1996,62(7):2482−2488.
|
[24] |
CHANG S P, KIM D H, LEE W Y, et al. Identification of fibrinogen-induced nattokinase WRL101 from Bacillus subtilis WRL101 isolated from Doenjang[J]. African Journal of Microbiology Research,2013,7(19):15−22.
|
[25] |
KIM S H, CHOI N S. Purification and characterization of Subtilisin DJ-4 secreted by Bacillus sp
|
[26] |
DEVI C S, MOHANASRINIVASAN V, SHARMA P, et al. Production, purification and stability studies on nattokinase: A therapeutic protein extracted from mutant Pseudomonas aeruginosa CMSS isolated from bovine milk[J]. International Journal of Peptide Research and Therapeutics,2015,22(2):263−269.
|
[27] |
WANG S L, CHEN H J, LIANG T W, et al. A novel nattokinase produced by Pseudomonas sp
|
[28] |
VAITHILINGAM M, CHANDRASEKARAN S D, GUPTA S, et al. Extraction of nattokinase enzyme from Bacillus cereus isolated from rust[J]. National Academy Science Letters,2016,39(4):263−270. doi: 10.1007/s40009-016-0476-7
|
[29] |
INATSU Y, NAKAMURA N, YURIKO Y, et al. Characterization of Bacillus subtilis strains in Thua nao, a traditional fermented soybean food in northern Thailand[J]. Letters in Applied Microbiology,2006,43(3):237−242. doi: 10.1111/j.1472-765X.2006.01966.x
|
[30] |
KUMAR D J M, RAKSHITHA R, M ANNU V, et al. Production, optimization and characterization of fibrinolytic enzyme by Bacillus subtilis RJAS19[J]. Pakistan Journal of Biological Sciences,2014,17(4):529−534. doi: 10.3923/pjbs.2014.529.534
|
[31] |
CHANG C T, FAN M H, KUO F C, et al. Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1[J]. Journal of Agriculture and Food Chemistry,2000,48(8):3210−3216. doi: 10.1021/jf000020k
|
[32] |
WANG S L, WU Y Y, LIANG T W. Purification and biochemical characterization of a nattokinase by conversion of shrimp shell with Bacillus subtilis TKU007[J]. New Biotechnology,2011,28(2):196−202. doi: 10.1016/j.nbt.2010.09.003
|
[33] |
LUO Y, LI B O, JI H, et al. Effect of voybean varieties on the fibrinolytic activity and sensory characteristics of Douchi[J]. Journal of Food Processing and Preservation,2010,34:457−469. doi: 10.1111/j.1745-4549.2008.00297.x
|
[34] |
LIU J, XING J, CHANG T, et al. Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental methods[J]. Process Biochemistry,2005,40(8):2757−2762. doi: 10.1016/j.procbio.2004.12.025
|
[35] |
KIM C, RI K, CHOE S. A novel fibrinolytic enzymes from the Korean traditional fermented food-Jotgal: Purification and characterization[J]. Journal of Food Biochemistry,2020,44(7):e13255.
|
[36] |
NIE G, ZHU Z, LIU F, et al. Co-production of nattokinase and poly (γ-glutamic acid) under solid-state fermentation using soybean and rice husk[J]. Brazilian Archives of Biology and Technology,2015,58(5):718−724. doi: 10.1590/S1516-89132015050172
|
[37] |
SHIH M C, YANG K A I T U, SU S Y, et al. Optimization process of roasted broken black soybean natto using response surface methodology[J]. Journal of Food Processing and Preservation,2011,37(5):474−482.
|
[38] |
GUO N, JIANG Y W, SONG X R, et al. Effect of Bacillus natto solid-state fermentation on the functional constituents and properties of Ginkgo seeds[J]. Journal of Food Biochemistry,2019,43(5):e12820. doi: 10.1111/jfbc.12820
|
[39] |
DONG M Z, AN J Y, WANG L T, et al. Development of fermented chestnut with Bacillus natto: Functional and sensory properties[J]. Food Research International,2020,130:108941. doi: 10.1016/j.foodres.2019.108941
|
[40] |
VONG W C, LIU S Q. Biovalorisation of okara (soybean residue) for food and nutrition[J]. Trends in Food Science & Technology,2016,52:139−147.
|
[41] |
PAGNONCELLI M G B, FERNANDES M J, RODRIGUES C, et al. Nattokinases [M]. Current Developments in Biotechnology and Bioengineering, 2017: 509-526.
|
[42] |
CAI D, ZHANG B, RAO Y, et al. Improving the utilization rate of soybean meal for efficient production of bacitracin and heterologous proteins in the aprA-deficient strain of Bacillus licheniformis[J]. Applied Microbiology and Biotechnology,2019,103(12):4789−4799. doi: 10.1007/s00253-019-09804-0
|
[43] |
BERENJIAN A, MAHANAMA R, KAVANAGH J, et al. Nattokinase production: Medium components and feeding strategy studies[J]. Chemical Industry and Chemical Engineering Quarterly,2014,20(4):541−547. doi: 10.2298/CICEQ130928037B
|
[44] |
YANG H, LIU Y, NING Y, et al. Characterization of an intracellular alkaline serine protease from Bacillus velezensis SW5 with fibrinolytic activity[J]. Current Microbiology,2020,77(8):1610−1621. doi: 10.1007/s00284-020-01977-6
|
[45] |
MAHAJAN P M, GOKHALE S V, LELE S S. Production of nattokinase using Bacillus natto NRRL 3666: Media optimization, scale up, and kinetic modeling[J]. Food Science and Biotechnology,2010,19(6):1593−1603. doi: 10.1007/s10068-010-0226-4
|
[46] |
TUAN N A, THUAN D H T, TAM T T M, et al. Determination the optimum fermentation in obtaining nattokinase by Bacillus subtilis natto[J]. International Journal of Innovation and Applied Studies,2015,13:663−668.
|
[47] |
MAN L L, XIANG D J, ZHANG C L. Strain screening from traditional fermented soybean foods and induction of nattokinase production in Bacillus subtilis MX-6[J]. Probiotics and Antimicrobial Proteins,2019,11(1):283−294. doi: 10.1007/s12602-017-9382-7
|
[48] |
KHURSADE P S, GALANDE S H, SHIVA KRISHNA P, et al. Stenotrophomonas maltophilia Gd2: A potential and novel isolate for fibrinolytic enzyme production[J]. Saudi Journal of Biological Sciences,2019,26(7):1567−1575. doi: 10.1016/j.sjbs.2018.10.014
|
[49] |
MOULA ALI A M, BAVISETTY S C B. Purification, physicochemical properties, and statistical optimization of fibrinolytic enzymes especially from fermented foods: A comprehensive review[J]. International Journal of Biological Macromolecules,2020,163:1498−1517. doi: 10.1016/j.ijbiomac.2020.07.303
|
[50] |
AVHAD D N, RATHOD V K. Ultrasound assisted production of a fibrinolytic enzyme in a bioreactor[J]. Ultrasonics Sonochemistry,2015,22:257−264. doi: 10.1016/j.ultsonch.2014.04.020
|
[51] |
SINGH R, KUMAR M, MITTAL A, et al. Microbial enzymes: Industrial progress in 21st century[J]. 3 Biotech,2016,6(2):174. doi: 10.1007/s13205-016-0485-8
|
[52] |
ZAHOOR, KHAN, MARYAM, et al. Bacillus tequilensis ZMS-2: A novel source of alkaline protease with antimicrobial, anti-coagulant, fibrinolytic and dehairing potentials [J]. Pakistan Journal of Pharmaceutical Sciences, 2019, 32(4(Supplementary)): 1913-1918.
|
[53] |
CHITTE R R, DESHMUKH S V, KANEKAR P P. Production, purification, and biochemical characterization of a fibrinolytic enzyme from thermophilic Streptomyces sp
|
[54] |
KWON E Y, KIM K M, KIM M K, et al. Production of nattokinase by high cell density fed-batch culture of Bacillus subtilis[J]. Bioprocess and Biosystems Engineering,2011,34(7):789−793. doi: 10.1007/s00449-011-0527-x
|
[55] |
LIU Z, ZHENG W, GE C, et al. High-level extracellular production of recombinant nattokinase in Bacillus subtilis WB800 by multiple tandem promoters [J]. BMC Microbiology, 2019, 19(1): 89.
|
[56] |
PURWAENI E, RIANI C, RETNONINGRUM D S. Molecular characterization of bacterial fibrinolytic proteins from indonesian traditional fermented foods[J]. Protein J,2020,39(3):258−267. doi: 10.1007/s10930-020-09897-x
|
[57] |
LIANG X, ZHANG L, ZHONG J, et al. Secretory expression of a heterologous nattokinase in Lactococcus lactis[J]. Applied Microbiology and Biotechnology,2007,75(1):95−101. doi: 10.1007/s00253-006-0809-4
|
[58] |
HAN L, ZHANG L, LIU J, et al. Transient expression of optimized and synthesized nattokinase gene in melon fruit by agroinfiltration[J]. Plant Biotechnology,2015,32(2):175−180. doi: 10.5511/plantbiotechnology.15.0430a
|
[59] |
LI X, WANG X, XIONG S, et al. Expression and purification of recombinant nattokinase in Spodoptera frugiperda cells[J]. Biotechnology Letter,2007,29(10):1459−1464. doi: 10.1007/s10529-007-9426-2
|
[60] |
WU S M, FENG C, ZHONG J, et al. Enhanced production of recombinant nattokinase in Bacillus subtilis by promoter optimization[J]. World Journal of Microbiology & Biotechnology,2011,27(1):99−106.
|
[61] |
CAI Y J, BAO W, JIANG S J, et al. Directed evolution improves the fibrinolytic activity of nattokinase from Bacillus natto[J]. FEMS Microbiology Letters,2011,325(2):155−161. doi: 10.1111/j.1574-6968.2011.02423.x
|
[62] |
CUI W, SUO F, CHENG J, et al. Stepwise modifications of genetic parts reinforce the secretory production of nattokinase in Bacillus subtilis[J]. Microbial Biotechnology,2018,11(5):930−942. doi: 10.1111/1751-7915.13298
|
[63] |
CHEN P T, CHAO Y P. Enhanced production of recombinant nattokinase in Bacillus subtilisby the elimination of limiting factors[J]. Biotechnology Letters,2006,28(19):1595−1600. doi: 10.1007/s10529-006-9126-3
|
[64] |
WENG M, DENG X, JIEYUAN W U, et al. Thermostability of subtilisin nattokinase obtained by site-directed mutagenesis[J]. Wuhan University Journal of Natural Sciences,2014,19(3):229−234. doi: 10.1007/s11859-014-1006-4
|
[65] |
DEEPAK V, PANDIAN S, KALISHWARALAL K, et al. Purification, immobilization, and characterization of nattokinase on PHB nanoparticles[J]. Bioresource Technology,2009,100(24):6644−6646. doi: 10.1016/j.biortech.2009.06.057
|
[66] |
HSIEH C W, LU W C, HSIEH W C, et al. Improvement of the stability of nattokinase using γ-polyglutamic acid as a coating material for microencapsulation[J]. LWT-Food Science and Technology,2009,42(1):144−149. doi: 10.1016/j.lwt.2008.05.025
|
[67] |
WU C, GAO C, LÜ S, et al. Construction of polylysine dendrimer nanocomposites carrying nattokinase and their application in thrombolysis[J]. Journal of Biomedical Materials Research Part A,2018,106(2):440−449. doi: 10.1002/jbm.a.36232
|
[68] |
CHEN C, DUAN H, GAO C, et al. Non-covalent modification of thrombolytic agent nattokinase: Simultaneous improvement of fibrinolysis activity and enzymatic stability[J]. RSC Advances,2014,4(52):27422−27429. doi: 10.1039/C4RA02626H
|
[69] |
YE W, WANG N, HU K, et al. Bio-inspired microcapsule for targeted antithrombotic drug delivery[J]. RSC Advances,2018,8(48):27253−27259. doi: 10.1039/C8RA04273J
|
[70] |
REN L, WANG X, WU H, et al. Conjugation of nattokinase and lumbrukinase with magnetic nanoparticles for the assay of their thrombolytic activities[J]. Journal of Molecular Catalysis B:Enzymatic,2010,62(2):190−196. doi: 10.1016/j.molcatb.2009.10.009
|
[71] |
JI M, CHEN X, LUO J, et al. Improved blood compatibility of polysulfone membrane by anticoagulant protein immobilization[J]. Colloids and surfaces B, Biointerfaces,2019,175:586−595. doi: 10.1016/j.colsurfb.2018.12.026
|
[72] |
ZHANG X, LYU X, TONG Y, et al. Chitosan/casein based microparticles with a bilayer shell-core structure for oral delivery of nattokinase[J]. Food & Function,2020,11(12):10799−10816.
|
[73] |
ARSALAN A, YOUNUS H. Enzymes and nanoparticles: Modulation of enzymatic activity via nanoparticles [J]. International Journal of Biological Macromolecules, 2018, 118(Pt B): 1833-1847.
|
[74] |
LAW D, ZHANG Z. Stabilization and target delivery of nattokinase using compression coating[J]. Drug Development & Industrial Pharmacy,2007,33(5):495−503.
|
[75] |
DONG X Y, KONG F P, YUAN G Y, et al. Optimisation of preparation conditions and properties of phytosterol liposome-encapsulating nattokinase[J]. Natural Product Research,2012,26(6):548−556. doi: 10.1080/14786419.2010.528759
|
[76] |
FUJITA M, HONG K, ITO Y, et al. Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat[J]. Biological & Pharmaceutical Bulletin,1995,18(10):1387−1391.
|
[77] |
KAMIYA S, HAGIMORI M, OGASAWARA M, et al. In vivo evaluation method of the effect of nattokinase on carrageenan-induced tail thrombosis in a rat model[J]. Acta Haematologica,2010,124(4):218−224. doi: 10.1159/000321518
|
[78] |
GUO H, BAN Y H, CHA Y, et al. Comparative anti-thrombotic activity and haemorrhagic adverse effect of nattokinase and tissue-type plasminogen activator[J]. Food Science and Biotechnology,2019,28(5):1535−1542. doi: 10.1007/s10068-019-00580-1
|
[79] |
SUMI H, YANAGISAWA Y, YATAGAI C, et al. Natto Bacillus as an oral fibrinolytic agent: Nattokinase activity and the ingestion effect of Bacillus subtilis natto[J]. Food Science & Technology International Tokyo,2004,10(1):17−20.
|
[80] |
FUJITA M, OHNISHI K, TAKAOKA S, et al. Antihypertensive effects of continuous oral administration of nattokinase and its fragments in spontaneously hypertensive rats[J]. Biological & Pharmaceutical Bulletin,2011,34(11):1696−1701.
|
[81] |
LEE B H, LAI Y S, WU S C. Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto)-fermented pigeon pea[J]. Journal of Food and Drug Analysis,2015,23(4):750−757. doi: 10.1016/j.jfda.2015.06.008
|
[82] |
SUWANMANON K, HSIEH P C. Effect of gamma-aminobutyric acid and nattokinase-enriched fermented beans on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats[J]. Journal of Food and Drug Analysis,2014,22(4):485−491. doi: 10.1016/j.jfda.2014.03.005
|
[83] |
MURAKAMI K, YAMANAKA N, OHNISHI K, et al. Inhibition of angiotensin I converting enzyme by subtilisin NAT (nattokinase) in natto, a Japanese traditional fermented food[J]. Food & Function,2012,3(6):674−678.
|
[84] |
IBE S, YOSHIDA K, KUMADA K, et al. Antihypertensive effects of natto, a traditional Japanese fermented food, in spontaneously hypertensive rats[J]. Food Science & Technology Research,2009,15(2):199−202.
|
[85] |
WEBER M A, SCHIFFRIN E L, WHITE W B, et al. Clinical practice guidelines for the management of hypertension in the community a statement by the american society of hypertension and the international society of hypertension[J]. Journal of Clinical Hypertension,2014,16(1):14−26. doi: 10.1111/jch.12237
|
[86] |
LIN Y. A clinical study on the effect of nattokinase on carotid artery atherosclerosis and hyperlipidaemia[J]. Chinese Medical Journal,2017,97(26):2038−2045.
|
[87] |
WU D J, LIN C S, LEE M Y. Lipid-lowering effect of nattokinase in patients with primary hypercholesterolemia[J]. Acta Cardiologica Sinica,2009,25(1):26−30.
|
[88] |
谢嵩, 于宗琴, 刘秀菊. 纳豆激酶的制备及其降血脂功效研究[J]. 中国生化药物杂志,2015,35(1):17−20. [XIE S, YU Z, LIU X. Preparation of nattokinase and study on its hypolipidemic effect[J]. Chinese Journal of Biochemical Pharmaceutics,2015,35(1):17−20.
XIE S, YU Z, LIU X. Preparation of nattokinase and study on its hypolipidemic effect [J]. Chinese Journal of Biochemical Pharmaceutics. 2015, 35(1): 17–20.
|
[89] |
YANG N C, CHOU C W, CHEN C Y, et al. Combined nattokinase with red yeast rice but not nattokinase alone has potent effects on blood lipids in human subjects with hyperlipidemia[J]. Asia Pacific Journal of Clinical Nutrition,2009,18(3):310−317.
|
[90] |
FOGACCI F, BANACH M, MIKHAILIDIS D P, et al. Safety of red yeast rice supplementation: A systematic review and meta-analysis of randomized controlled trials [J]. Pharmacological Research, 2019, 143(1-16).
|
[91] |
YOO H J, KIM M, LEE A, et al. The effects of nattokinase supplementation on collagen-epinephrine closure time, prothrombin time and activated partial thromboplastin time in nondiabetic and hypercholesterolemic subjects[J]. Food & Function,2019,10(5):2888−2893.
|
[92] |
BHATT P C, PATHAK S, KUMAR V, et al. Attenuation of neurobehavioral and neurochemical abnormalities in animal model of cognitive deficits of Alzheimer’s disease by fermented soybean nanonutraceutical[J]. Inflammopharmacology,2018,26(1):105−118. doi: 10.1007/s10787-017-0381-9
|
[93] |
AHMED H H, FADL N N, EL-SHAMY K A, et al. Miracle enzymes serrapeptase and nattokinase mitigate neuroinflammation and apoptosis associated with Alzheimer's disease in experimental model[J]. World Journal of Pharmacy and Pharmaceutical Sciences,2014,3(2):876−891.
|
[94] |
TAKANO A, HIRATA A, OGASAWARA K, et al. Posterior vitreous detachment induced by nattokinase (subtilisin nat): A novel enzyme for pharmacologic vitreolysis[J]. Investigative Ophthalmology & Visual Science,2006,47(5):2075−2079.
|
[95] |
YAN Y, WANG Y, QIAN J, et al. Nattokinase crude extract inhibits hepatocellular carcinoma growth in mice[J]. Journal of Microbiology and Biotechnology,2019,29(8):1281−1287. doi: 10.4014/jmb.1812.12058
|
[96] |
YANG H J, KIM M J, KWON D Y, et al. Combination of aronia, red ginseng, shiitake mushroom and nattokinase potentiated insulin secretion and reduced insulin resistance with improving gut microbiome dysbiosis in insulin deficient type 2 diabetic rats[J]. Nutrients,2018,10(7):948−967. doi: 10.3390/nu10070948
|
[97] |
WEI X, LUO M, LIU H. Preparation of the antithrombotic and antimicrobial coating through layer-by-layer self-assembly of nattokinase-nanosilver complex and polyethylenimine[J]. Colloids and Surfaces B, Biointerfaces,2014,116:418−423. doi: 10.1016/j.colsurfb.2014.01.034
|
[98] |
GOSHUA G, PINE A B, MEIZLISH M L, et al. Endotheliopathy in COVID-19-associated coagulopathy: Evidence from a single-centre, cross-sectional study[J]. The Lancet Haematology,2020,7(8):e575−e582. doi: 10.1016/S2352-3026(20)30216-7
|
[99] |
REN B, YAN F, DENG Z, et al. Extremely high incidence of lower extremity deep venous thrombosis in 48 patients with severe COVID-19 in Wuhan[J]. Circulation,2020,142(2):181−183. doi: 10.1161/CIRCULATIONAHA.120.047407
|
1. |
张瑞娟,苏艳群,夏菲,刘金刚,肖贵华,孙德文,杨小博,黄举. 不同种类研磨淀粉用于纸质食品包装的防油性能研究. 中国造纸. 2025(01): 62-68+84 .
![]() | |
2. |
李晶晶,张甜甜,佟岳,刘培玲. 高静压协同酸水解促淀粉颗粒纳米晶体化. 中国食品学报. 2024(12): 57-68 .
![]() | |
3. |
张芮娟. 固体制剂制药工艺及质量控制研究. 粘接. 2023(04): 149-152 .
![]() | |
4. |
高琦,张首央,唐子程,彭雪,王宁,薛友林. 蛋白质纳米颗粒的制备及其在食品领域的应用研究进展. 食品工业科技. 2023(11): 30-37 .
![]() | |
5. |
段智颖,王申宛,艾斌凌,郑丽丽,郑晓燕,杨旸,校导,杨劲松,盛占武. 表没食子儿茶素没食子酸酯-香蕉脱支淀粉纳米颗粒的绿色制备及其性质. 食品科学. 2023(12): 74-83 .
![]() |