Citation: | TONG Yilin, FAN Fangyuan, TIAN Yuqian, et al. Taste-Characteristic Attributes and Related Contribution Compounds of White Tea[J]. Science and Technology of Food Industry, 2022, 43(7): 286−293. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060260. |
[1] |
张应根, 王振康, 陈林, 等. 环境温湿度调控对茶鲜叶萎凋失水及白茶品质的影响[J]. 福建农业学报,2012,27(11):1205−1210. [ZHANG Y G, WANG Z K, CHEN L, et al. Effect of temperature and RH during withering on water loss and quality of white tea[J]. Fujian Journal of Agricultural Sciences,2012,27(11):1205−1210. doi: 10.3969/j.issn.1008-0384.2012.11.012
|
[2] |
CRISTÓBAL E R, LORENA C, JOSÉÁNGEL L J, et al. Effects of long-term ingestion of white tea on oxidation produced by aging and acute oxidative damage in rats[J]. Journal of Physiology and Biochemistry,2017,1:171−177.
|
[3] |
HAJIAGHAALIPOUR F, KANTHIMATHI M S, SANUSI J, et al. White tea(Camellia sinensis) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage[J]. Food Chemistry,2015,169:401−410. doi: 10.1016/j.foodchem.2014.07.005
|
[4] |
TENORE G C, STIUSO P, CAMPIGLIA P, et al. In vitro hypoglycaemic and hypolipidemic potential of white tea polyphenols[J]. Food Chemistry,2013,141(3):2379−2384. doi: 10.1016/j.foodchem.2013.04.128
|
[5] |
黄赟. 福建白茶化学成分与感官品质研究初报[D]. 福州: 福建农林大学, 2013.
HUANG Y. Studies on chemical components and sensory qualities of Fujian white teas[D]. Fuzhou: Fujian Agriculture & Forestry University, 2013.
|
[6] |
谷兆骐. 浙江省主栽茶树品种加工白茶的品质与工艺研究[D]. 杭州: 浙江大学, 2016.
GU Z Q. Research on the quality and processing of white tea in Zhejiang Province[D]. Hangzhou: Zhejiang University, 2016.
|
[7] |
周雪芳, 武珊珊, 阮朝帅, 等. 云南白茶与福建白茶对比研究[J]. 安徽农业科学,2020,48(2):177−179. [ZHOU X F, WU S S, RUAN Z S, et al. Comparative study of Yunnan white tea and Fujian white tea[J]. Journal of Anhui Agricultural Sciences,2020,48(2):177−179. doi: 10.3969/j.issn.0517-6611.2020.02.051
|
[8] |
ACÁCIO A F Z, HAMINIUK C W I, BETA T. Multi-response optimization of phenolic antioxidants from white tea(Camellia sinensis L. Kuntze) and their identification by LC–DAD–Q-TOF–MS/MS[J]. LWT-Food Science & Technology,2016,65:897−907.
|
[9] |
龚淑英, 谷兆骐, 范方媛, 等. 浙江省主栽茶树品种工艺白茶的滋味成分研究[J]. 茶叶科学,2016,36(3):277−284. [GONG S Y, GU Z Q, FAN F Y, et al. Research on taste compounds in white tea processed from cultivars in Zhejiang Province[J]. Journal of Tae Science,2016,36(3):277−284. doi: 10.3969/j.issn.1000-369X.2016.03.008
|
[10] |
孔祥瑞, 王让剑, 杨军, 等. 白茶感官品质与化学成分的相关和通径分析[J]. 热带作物学报,2013,34(10):2014−2017. [KONG X R, WANG R J, YANG J, et al. Correlation and path analysis on organoleptic quality and chemical components in white tea[J]. Chinese Journal of Tropical Crops,2013,34(10):2014−2017. doi: 10.3969/j.issn.1000-2561.2013.10.028
|
[11] |
CHEN Y, HU Z Y, LU M L, et al. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea[J]. Food Research International,2018,106:909−919. doi: 10.1016/j.foodres.2018.01.069
|
[12] |
陈志辉, 游小妹, 林郑和, 等. 福建省白茶品种遗传多样性分析[J]. 茶叶学报,2017,58(3):108−114. [CHEN Z H, YOU X M, LIN Z H, et al. Genetic diversity of white tea cultivars in Fujian Province[J]. Acta Tea Sinica,2017,58(3):108−114. doi: 10.3969/j.issn.1007-4872.2017.03.005
|
[13] |
范方媛, 陈萍, 罗文文, 等. 浙江“春雨2号”品种白茶加工工艺初探[J]. 浙江大学学报(农业与生命科版),2017,43(2):229−238. [FAN F Y, CHEN P, LUO W W, et al. Preliminary study on processing technology of white tea “Chunyu 2” from Zhejiang Province[J]. Journal of Zhejiang university(Agriculture and Life Sciences),2017,43(2):229−238.
|
[14] |
蒋宾, 鄢远珍, 刘琨毅, 等. 云南和福建白茶差异比较研究[J]. 西南大学学报(自然科学版),2021,43(4):62−72. [JIANG B, YAN Y Z, LIU K Y, et al. Comparison of the difference between Yunnan and Fujian white tea[J]. Journal of Southwest University (Natural Science Edition),2021,43(4):62−72.
|
[15] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 23776-2018 茶叶感官审评方法[S]. 北京: 中国标准出版社, 2018.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 23776-2018, Methodology for sensory evaluation of tea[S]. Beijing: Standards Press of China, 2018.
|
[16] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 14487-2017 茶叶感官术语[S]. 北京: 中国标准出版社, 2017.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 14487-2017, Tea vocabulary for sensory evaluation[S]. Beijing: Standards Press of China, 2017.
|
[17] |
范方媛, 唐贵珍, 龚淑英, 等. 典型黄茶滋味品质特征属性及相关滋味化学组分[J]. 中国农业科学,2020,53(2):371−382. [FAN F Y, TANG G Z, GONG S Y, et al. Typical yellow tea taste characteristic and its related taste-chemical compositions[J]. Scientia Agricultural Sinica,2020,53(2):371−382.
|
[18] |
范方媛, 杨晓蕾, 龚淑英, 等. 闷黄工艺因子对黄茶品质及滋味化学组分的影响研究[J]. 茶叶科学,2019,39(1):63−73. [FAN F Y, YANG X L, GONG S Y, et al. The effect of technological factors on yellow tea quality and taste-chemical constituents in the yellowing process[J]. Journal of Tea Science,2019,39(1):63−73. doi: 10.3969/j.issn.1000-369X.2019.01.007
|
[19] |
FANG Z T, SONG C J, XU H R, YE J H. Dynamic changes in flavonol glycosides during production of green, yellow, white, oolong and black teas from Camellia sinensis L.(cv. Fudingdabaicha)[J]. International Journal of Food Science & Technology,2019,54(2):490−498.
|
[20] |
ZHOU Y, ZENG L, LIU X, et al. Formation of (E)-nerolidol in tea(Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing[J]. Food Chemistry,2017,231:78−86. doi: 10.1016/j.foodchem.2017.03.122
|
[21] |
YU X, LI Y, HE C, et al. Nonvolatile metabolism in postharvest tea(Camellia sinensis L.) leaves: Effects of different withering treatments on nonvolatile metabolites, gene expression levels, and enzyme activity[J]. Food Chemistry,2020,327:126992. doi: 10.1016/j.foodchem.2020.126992
|
[22] |
CHEN Q, SHI J, MU B, et al. Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing[J]. Food Chemistry,2020,332:127412. doi: 10.1016/j.foodchem.2020.127412
|
[23] |
TANAKA T, WATARUMI S, FUJIEDA M, et al. New black tea polyphenol having N-ethyl-2-pyrrolidinone moiety derived from tea amino acid theanine: Isolation, characterization and partial synthesis[J]. Food Chemistry,2005,93(1):81−87. doi: 10.1016/j.foodchem.2004.09.013
|
[24] |
WANG Y, ZHENG P C, LIU P P, et al. Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling[J]. Food Chemistry,2019,272(JAN.30):313−322.
|
[25] |
WU L Y, HUANG X J, LIU S R, et al. Understanding the formation mechanism of oolong tea characteristic non-volatile chemical constitutes during manufacturing processes by using integrated widely-targeted metabolome and DIA proteome analysis[J]. Food Chemistry,2020,310:125941. doi: 10.1016/j.foodchem.2019.125941
|
[26] |
TENG R, WU Z, MA H, et al. Differentially expressed protein are involved in dynamic changes of catechins contents in postharvest tea leaves under different temperatures[J]. Journal of Agricultural and Food Chemistry,2019,67(26):7547−7560. doi: 10.1021/acs.jafc.9b01705
|
[27] |
ZHANG L, CAO Q Q, DANIEL G, et al. Association between chemistry and taste of tea: A review[J]. Trends in Food Science & Technology,2020,101:139−149.
|
[28] |
YANG Z, BALDERMANN S, WATANABE N. Recent studies of the volatile compounds in tea[J]. Food Research International,2013,53(2):585−599. doi: 10.1016/j.foodres.2013.02.011
|
[29] |
陈勤操. 代谢组学联合蛋白组学解析白茶的品质形成机理[D]. 武汉: 华中农业大学, 2019.
CHEN Q C. Study on formation mechanism of white tea characteristics based on metabolomics and proteomics anaysis[D]. Wuhan: Huazhong Agricultural University, 2019.
|
[30] |
FAN F Y, SHI M, NIE Y, et al. Differential behaviors of tea catechins under thermal processing: Formation of non-enzymatic oligomers[J]. Food Chemistry,2016,196:347−354. doi: 10.1016/j.foodchem.2015.09.056
|
1. |
胡一杰,刘杏宜,刘剑,邝金文,徐中岳. 我国保健食品功能声称存在的问题及发展对策研究. 卫生软科学. 2025(03): 49-53 .
![]() | |
2. |
杨帅,郑林,迟明艳,巩仔鹏,李月婷,魏茂陈,黄勇. UPLC-MS/MS法同时测定阿胶中18种核苷、游离氨基酸的含量. 中成药. 2024(07): 2140-2146 .
![]() | |
3. |
蒲健,杨帅,祝扬帆,谭丹,郑林,迟明艳,黄勇. UPLC-MS/MS法同时测定阿胶中20种氨基酸含量及其化学模式识别分析. 中国药业. 2024(22): 87-94 .
![]() | |
4. |
云振宇,吴琦,兰韬,赵琳,周紫梦. 基于高质量发展的我国保健食品标准化工作现状、问题分析及展望. 食品工业科技. 2023(08): 476-484 .
![]() | |
5. |
陈建平,何颂捷,谢皓玥,胡凤,谭文渊. 超高效液相色谱-三重四级杆质谱法测定保健食品中六种功能成分. 食品与发酵科技. 2023(02): 124-130 .
![]() | |
6. |
陶瑞,刘晨晨,王远远,刘柱. 保健食品检测技术指导原则解读及发展方向探讨. 食品安全质量检测学报. 2023(14): 166-174 .
![]() | |
7. |
王超,张潇予,祝波,杨钊. 高效液相色谱-串联四级杆质谱法测定保健食品中氯化高铁血红素. 中国食品添加剂. 2023(11): 197-201 .
![]() | |
8. |
史敏. 保健食品功效成分检测技术与方法. 食品安全导刊. 2023(32): 166-168 .
![]() | |
9. |
姜雨,李菲菲,付雨,李雨虹,尹秀文. 辅酶Q10类保健食品注册审评审批状况分析与建议. 食品工业科技. 2022(08): 264-272 .
![]() | |
10. |
魏素珍. 具有保护肺功能的保健食品功能学检测方法研究. 中国食品工业. 2022(07): 118-121 .
![]() | |
11. |
袁利杰,纵伟. 超高效液相色谱-四极杆/轨道阱高分辨质谱法快速筛查功能性保健食品中19种特征性成分. 食品安全质量检测学报. 2022(20): 6518-6527 .
![]() | |
12. |
陈建平,冉渺,谢皓玥,田富丽. 超高效液相质谱法测定增强免疫类中药保健食品中多种功能成分含量. 中药与临床. 2022(06): 29-33 .
![]() | |
13. |
张再平,吴莉,方方,冯有龙,曹玲. 超高效液相色谱法同时测定芦荟保健食品中8种蒽醌类成分的含量. 食品科技. 2021(04): 291-295 .
![]() | |
14. |
田明,孙璐,李昱霏,胡昊,冯军. 基于国际经验探究中国保健食品原料管理研究. 食品工业科技. 2021(13): 21-25 .
![]() | |
15. |
田明,尹淑涛,闫志刚,薛天. 澳大利亚补充药品管理及对我国保健食品监管启示研究. 食品安全质量检测学报. 2021(11): 4438-4445 .
![]() | |
16. |
王倩,刘睿,朱悦,杨滨,丁玉华,白加德,温华军,吴海荣,段金廒,赵明. 麋鹿角中核苷类和氨基酸类成分区域差异性分析. 中国中药杂志. 2021(14): 3494-3503 .
![]() | |
17. |
袁利杰. 河南省2018年—2020年保健食品抽检结果分析. 中国卫生检验杂志. 2021(23): 2909-2913 .
![]() |