FANG Qiong, CAO Jiankang, ZHAO Yumei, et al. Effect of Cold Plasma on Microbial Community in Cold Storage Room for Fruits and Vegetables[J]. Science and Technology of Food Industry, 2022, 43(3): 128−136. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060212.
Citation: FANG Qiong, CAO Jiankang, ZHAO Yumei, et al. Effect of Cold Plasma on Microbial Community in Cold Storage Room for Fruits and Vegetables[J]. Science and Technology of Food Industry, 2022, 43(3): 128−136. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060212.

Effect of Cold Plasma on Microbial Community in Cold Storage Room for Fruits and Vegetables

More Information
  • Received Date: June 23, 2021
  • Available Online: November 28, 2021
  • The effect of cold plasma treatment on the microbial community of air at the 0 ℃ cold storage was studied. The structure and diversity of the bacterial and fungal communities were analyzed by high-throughput sequencing technology. The microbial symbiosis network was constructed. The results showed that the total concentration of bacteria and fungi decreased from 480 CFU/m3 to 44 CFU/m3 after cold plasma cyclic treatment for 30 days. The α diversity of bacterial and fungal communities was also significantly reduced. Principal co-ordinates analysis and permutational multivariate analysis of variance showed that the bacterial community and fungal community were significantly different before and after the treatment. Before cold plasma treatment, Bacillus, Comamonas and Acetobacter were the dominant bacteria of the cold storage air, while Saccharomycopsis, Aspergillus, Thermoascus, Rasamsonia, Penicillium, Wickerhamomyces and Russula were the dominant fungi. After cold plasma treatment, Acetobacter and these dominant fungi were significantly reduced. The symbiotic network analysis showed that there was a strong positive correlation between Sedimentibacter and other bacterial species. Besides, Saccharomycopsis, Thermoascus, Rasamsonia and Wickerhamomyces were the key nodes in the fungal symbiosis network and positively correlated with each other. This work indicates that cold plasma can significantly reduce the microbial quantity and diversity of microbial community in the cold storage, and can effectively kill some phytopathogen and pathomycete, which has a good application prospect in the cold storage of fruits and vegetables.
  • [1]
    ZHANG K S, LIU J H. Study on human-simulated intelligent control method of fruit & vegetable cold storage[C]//IEEE. 2009 2nd IEEE International Conference on Computer Science and Information Technology. Beijing, China: 2009: 30−33.
    [2]
    赵雯涵. 果蔬冷库节能技术[J]. 农产品加工,2021(6):91−93. [ZHAO W H. Study on energy conservation of fruit and vegetable cold store[J]. Farm Products Processing,2021(6):91−93.
    [3]
    张平, 张鹤, 陈绍慧, 等. 我国果蔬物流保鲜产业的现状与发展战略思考[J]. 保鲜与加工,2013,13(4):1−5. [ZHANG P, ZHANG H, CHEN S H, et al. Status and considerations for development strategy of the industry of logistics and storage of fruits and vegetables in China[J]. Storage and Process,2013,13(4):1−5. doi: 10.3969/j.issn.1009-6221.2013.04.001
    [4]
    赵松松, 杨昭, 张雷, 等. 果蔬冷链发展现状及冷激保鲜技术[J]. 冷藏技术,2017,40(4):52−55. [ZHAO S S, YANG Z, ZHANG L, et al. Development status of fruits and vegetables cold chain and preservation technology of cold shock treatment[J]. Journal of Refrigeration Technology,2017,40(4):52−55. doi: 10.3969/j.issn.1674-0548.2017.04.011
    [5]
    YE K P, WANG J J, HAN Y Q, et al. Investigation on microbial contamination in the cold storage room of domestic refrigerators[J]. Food Control,2019,99:64−67. doi: 10.1016/j.foodcont.2018.12.022
    [6]
    DE SIMONE N, CAPOZZI V, AMODIO M L, et al. Microbial-based biocontrol solutions for fruits and vegetables: Recent insight, patents, and innovative trends[J]. Recent Patents on Food, Nutrition & Agriculture,2021,12(1):3−18.
    [7]
    MAHDIEH M, MOHAMMAD R S, FAEZEH S, et al. A review of recent trends in the development of the microbial safety of fruits and vegetables[J]. Trends in Food Science & Technology,2020,103:321−332.
    [8]
    RONIT M, ANIKA S, ANUBHAV P S. Recent developments in cold plasma decontamination technology in the food industry[J]. Trends in Food Science & Technology,2018,80:93−103.
    [9]
    MISHRA R, BHATIA S, PAL R, et al. Cold plasma: Emerging as the new standard in food safety[J]. Research Inventy:International Journal of Engineering Science,2016,6:15−20.
    [10]
    MISRA N N, SCHLÜTER O, CULLEN P J. Cold plasma in food and agriculture: Fundamentals and applications[M]. 1st ed. San Diego: Academic Press, Elsevier Ltd, 2016.
    [11]
    陈芳艳, 吴三女, 宋莉, 等. 等离子体消毒灭菌的研究进展[J]. 中国消毒学杂志,2021,38(2):144−148. [CHEN F Y, WU S N, SONG L, et al. Research progress of plasma disinfection and sterilization[J]. Chinese Journal of Disinfection,2021,38(2):144−148. doi: 10.11726/j.issn.1001-7658.2021.02.019
    [12]
    HAN J Y, SONG W J, KANG J H, et al. Effect of cold atmospheric pressure plasma-activated water on the microbial safety of Korean rice cake[J]. LWT,2020,120:108918. doi: 10.1016/j.lwt.2019.108918
    [13]
    孙艳, 张志伟, 王世清. 常压低温等离子体对黄瓜表面大肠杆菌杀菌效果及品质的影响[J]. 粮油食品科技,2018,26(1):61−67. [SUN Y, ZHANG Z W, WANG S Q. Effect of atmospheric pressure low temperature plasma on sterilization rate of Escherichia coli on sliced cucumber surface and quality attributes[J]. Science and Technology of Cereals, Oils and Foods,2018,26(1):61−67. doi: 10.3969/j.issn.1007-7561.2018.01.013
    [14]
    DASAN B G, MUTLU M, BOYACI I H. Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor[J]. International Journal of Food Microbiology,2016,216:50−59. doi: 10.1016/j.ijfoodmicro.2015.09.006
    [15]
    李兆杰, 刘小菁, 杨丽君, 等. 辉光放电低温等离子体技术对食品的杀菌及其品质影响研究[J]. 安徽农业科学,2015,43(18):310−312,315. [LI Z J, LIU X J, YANG L J, et al. Sterilization of several foods by glow discharge low temperature plasma and its effects on food quality[J]. Journal of Anhui Agricultural Sciences,2015,43(18):310−312,315. doi: 10.3969/j.issn.0517-6611.2015.18.108
    [16]
    国家标准局. GB/T 18204.3-2013公共场所卫生检验方法第3部分: 空气微生物[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration. GB/T 18204.3-2013 Examination methods for public places—Part 3: Airborne microorganism[S]. Beijing: China Standards Press, 2013.
    [17]
    马玲, 张静, 赵亚红, 等. 枫香树林挥发物和空气负离子季节变化及对微生物数量的影响[J]. 浙江林业科技,2021,41(2):8−16. [MA L, ZHANG J, ZHAO Y H, et al. Seasonal variation of volatile organic compounds and negative air ions in Liquidambar formosana stand and their effect on microbial populations[J]. Journal of Zhejiang Forestry Science and Technology,2021,41(2):8−16. doi: 10.3969/j.issn.1001-3776.2021.02.002
    [18]
    ZHANG Q, SHI W C, ZHOU B, et al. Variable characteristics of microbial communities on the surface of sweetcherries under different storage conditions[J]. Postharvest Biology and Technology,2021,173:111408. doi: 10.1016/j.postharvbio.2020.111408
    [19]
    ROGNES T, FLOURI T, NICHOLS B, et al. VSEARCH: A versatile open source tool for metagenomics[J]. PEERJ, 2016, 4: e2584.
    [20]
    EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods,2013,10(10):996. doi: 10.1038/nmeth.2604
    [21]
    袁洋. 低温等离子体对苹果灰葡萄孢菌的抑菌活性及机制研究[D]. 北京: 中国农业大学, 2020.

    YUAN Y. Antifungal activities and mechanism of cold plasma against apple Botrytis cinerea[D]. Beijing: China Agricultural University, 2020.
    [22]
    王天雷, 何一宁, 郑英杰. 低温等离子体与其在微生物中相关应用的研究进展[J]. 上海预防医学,2020,32(10):872−877. [WANG T L, HE Y N, ZHENG Y J. Advances in research of application of low-temperature plasma in microbiology[J]. Shanghai Journal of Preventive Medicine,2020,32(10):872−877.
    [23]
    CHAO A, CHIU C H, JOST L. Topics in biodiversity and conservation [M/OL]. Cham: Springer International Publishing AG, 2016: 141–172.https://doi.org/10.1007/978-3-319-22461-9_8
    [24]
    CHAO A, BUNGE J. Estimating the number of species in a stochastic abundance model[J]. Biometrics,2002,58:531−539. doi: 10.1111/j.0006-341X.2002.00531.x
    [25]
    GUO X L, WAN Y Q, MUHAMMAD S, et al. Effect of mycorrhizal fungi inoculation on bacterial diversity, community structure and fruit yield of blueberry[J]. Rhizosphere,2021,19:100360. doi: 10.1016/j.rhisph.2021.100360
    [26]
    张二豪, 赵润东, 禄亚洲, 等. 藏东南产区葡萄和根际土壤细菌群落多样性[J/OL]. 食品与发酵工业, 2021, 1−9. https://doi.org/10.13995/j.cnki.11-1802/ts.025980

    ZHANG E H, ZHAO R D, LU Y Z, et al. Bacterial community diversity of grape and rhizosphere soil of grapevine plants grown in southeastern Tibet[J/OL]. Food and Fermentation Industries, 2021, 1−9. https://doi.org/10.13995/j.cnki.11-1802/ts.025980
    [27]
    闵航. 微生物学[M]. 杭州: 浙江大学出版社, 2011: 348.

    MIN H. Microbiology[M]. Hangzhou: Zhejiang University Press, 2011: 348.
    [28]
    MADIGAN M T, MARTINKO J M. Brock biology of microorganisms[M]. 11th ed. New Jersey: Prentice Hall, 2006.
    [29]
    周德庆. 微生物学教程[M]. 第3版. 北京: 高等教育出版社, 2011: 38−41.

    ZHOU D Q. Microbiology course[M]. 3rd ed. Beijing: Higher Education Press, 2011: 38−41.
    [30]
    李兆杰, 杨丽君, 刘小菁, 等. 辉光放电冷等离子体技术对微生物的杀菌动力学及杀菌机制[J]. 食品科学,2015,36(11):167−171. [LI Z J, YANG L J, LIU X J, et al. Bactericidal kinetics and mechanisms of low temperature glow discharge plasma[J]. Food Science,2015,36(11):167−171. doi: 10.7506/spkx1002-6630-201511032
    [31]
    王斌, 陈福生. 醋酸菌的分类进展[J]. 中国酿造,2014,33(12):1−10. [WANG B, CHEN F S. Taxonomy progress of acetic acid bacteria[J]. China Brewing,2014,33(12):1−10. doi: 10.11882/j.issn.0254-5071.2014.12.001
    [32]
    李迅, 胡沂淮, 裴建军, 等. 分子生物学技术在担子菌中的研究进展[J]. 中国食用菌,2003(4):6−8,42. [LI X, HU X H, PEI J J, et al. Advances in molecular biological techniques in Basidiomycetes[J]. Edible Fungi of China,2003(4):6−8,42. doi: 10.3969/j.issn.1003-8310.2003.04.002
    [33]
    许志刚. 普通植物病理学[M]. 第3版. 北京: 中国农业出版社, 2006.

    XU Z G. General Plant Pathology[M]. 3rd ed. Beijing: China Agriculture Press, 2006.
    [34]
    周蕊, 邹建宏, 白瑶, 等. 我国食品工业微生物菌种使用情况调查[J]. 山东大学学报(医学版),2014,52(6):108−112. [ZHOU R, ZOU J H, BAI Y, et al. Survey on microorganisms used in food industry[J]. Journal of Shandong University (Health Sciences),2014,52(6):108−112.
    [35]
    AHMED B, NUPUR G, CONNIE F C G, et al. Rasamsonia sp: An emerging infection amongst chronic granulomatous disease patients. A case of disseminated infection by a putatively novel Rasamsonia argillacea species complex involving the heart[J]. Medical Mycology Case Reports,2019,24:54−57. doi: 10.1016/j.mmcr.2019.04.002
    [36]
    宋晓雪, 胡文忠, 毕阳, 等. 鲜切果蔬中致腐微生物污染及其非热杀菌的研究进展[J]. 食品工业科技,2014,35(10):351−354. [SONG X X, HU W Z, BI Y, et al. Research progress in decay microbial infection and safety control of fresh-cut fruits and vegetables[J]. Science and Technology of Food Industry,2014,35(10):351−354.
    [37]
    ANDRÉAS H, ALFONSO V. Spearman rank correlation of the bivariate Student t and scale mixtures of normal distributions[J]. Journal of Multivariate Analysis,2020,179:104650. doi: 10.1016/j.jmva.2020.104650
    [38]
    HOU F R, ZHANG H J, XIE W J. Co-occurrence patterns and assembly processes of microeukaryotic communities in an early-spring diatom bloom[J]. Science of the Total Environment,2020,711:134624. doi: 10.1016/j.scitotenv.2019.134624
  • Cited by

    Periodical cited type(3)

    1. 余秋雨,岳子燕,刘佳利,和郁春,朱迎春. 加热温度、pH和离子强度对金针菇乳状液稳定性的影响. 食品工业科技. 2025(08): 131-139 . 本站查看
    2. 王其可,李小林,肖尧,商晓阳,刘文明,赵佳琪,郭锦棠. 复合乳化剂作用下抗温耐盐丁苯胶乳的制备及性能评价. 钻井液与完井液. 2024(01): 112-118 .
    3. 徐亦青,詹伟,牛军,王冶,卞丹. 大豆分离蛋白-蔗糖酯对不同油脂制备的乳液稳定性的影响. 食品工业科技. 2024(08): 110-118 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (231) PDF downloads (15) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return