Citation: | LIU Yao, WEI Yuanmiao, LI Ling, et al. Advances in Traceability Typing and Identification of Foodborne Pathogens[J]. Science and Technology of Food Industry, 2022, 43(12): 427−437. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060191. |
[1] |
MACCANNELL D. Bacterial strain typing[J]. Clinics in Laboratory Medicine,2013,33(3):629−650. doi: 10.1016/j.cll.2013.03.005
|
[2] |
LI W W, WU S Y, FU P, et al. National molecular tracing network for foodborne disease surveillance in China[J]. Food Control,2018,88:28−32. doi: 10.1016/j.foodcont.2017.12.032
|
[3] |
AKRAM M, RIAZ M, MUNIR N, et al. Progress and prospects in the management of bacterial infections and developments in phytotherapeutic modalities[J]. Clinical and Experimental Pharmacology and Physiology,2020,47(7):1107−1119. doi: 10.1111/1440-1681.13282
|
[4] |
POLO A B, FABRI R L, APOLONIO A C M. Searching for mechanisms of action of antimicrobials[J]. Archives of Microbiology,2020,202(9):2347−2354. doi: 10.1007/s00203-020-01959-z
|
[5] |
粟丽千, 张伦, 王建, 等. 食源性微生物检测及溯源研究进展[J]. 食品工业科技,2020,41(19):352−368. [LI L Q, ZHANG L, WANG J, et al. Research progress in detection and traceability of foodborne microorganism[J]. Science and Technology of Food Industry,2020,41(19):352−368.
LI L Q, ZHANG L, WANG J, et al. Research progress in detection and traceability of foodborne microorganism[J]. Science and Technology of Food Industry, 2020, 41(19): 352-368.
|
[6] |
SUN Y, WANG M, LIU H, et al. Development of an o-antigen serotyping scheme for Cronobacter sakazakii[J]. Appl Environ Microbiol,2011,77(7):2209−2214. doi: 10.1128/AEM.02229-10
|
[7] |
SALAZAR J K, WANG Y, YU S, et al. Polymerase chain reaction-based serotyping of pathogenic bacteria in food[J]. Journal of Microbiological Methods,2015,110:18−26. doi: 10.1016/j.mimet.2015.01.009
|
[8] |
张河战, 辜清吾. 沙门氏菌的分类、命名及中国沙门氏菌菌型分布[J]. 微生物学免疫学进展,2002,30(2):74−76. [ZHANG H Z, GU Q W. Classification and nomenclature of Salmonella and distribution of Salmonella types in China[J]. Progress in Microbiology and Immunology,2002,30(2):74−76. doi: 10.3969/j.issn.1005-5673.2002.02.018
ZHANG H Z, GU Q W. Classification and nomenclature of Salmonella and distribution of Salmonella types in China[J]. Progress in Microbiology and Immunology, 2002, 30(2): 74-76. doi: 10.3969/j.issn.1005-5673.2002.02.018
|
[9] |
方婷子, 史贤明, 施春雷. 沙门氏菌血清型快速PCR鉴定方法的建立[J]. 中国食品学报,2017,17(2):212−219. [FANG T Z, SHI X M, SHI C L. Establishment of a rapid PCR method for the identification of Salmonella serovars[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(2):212−219.
FANG T Z, SHI X M, SHI C L. Establishment of a rapid PCR method for the identification of Salmonella serovars[J]. Journal of Chinese Institute of Food Science and Technology, 2017, 17(2): 212-219.
|
[10] |
CASTILLA K S, GOBBI D D S D, MORENO L Z, et al. Characterization of Haemophilus parasuis isolated from brazilian swine through serotyping, AFLP and PFGE[J]. Research in Veterinary Science,2012,92(3):366−371. doi: 10.1016/j.rvsc.2011.04.006
|
[11] |
THRANE S W, TAYLOR V L, LUND O, et al. Application of whole-genome sequencing data for o-specific antigen analysis and in silico serotyping of Pseudomonas aeruginosa isolates[J]. Journal of Clinical Microbiology,2016,54(7):1782−1788. doi: 10.1128/JCM.00349-16
|
[12] |
CHUI H, CHAN M, HERNANDEZ D, et al. Rapid, sensitive, and specific Escherichia coli H antigen typing by matrix-assisted laser desorption ionization–time of flight-based peptide mass fingerprinting[J]. Journal of Clinical Microbiology,2015,53(8):2480−2485. doi: 10.1128/JCM.00593-15
|
[13] |
INCILI G K, KOLUMAN A, AKTÜRE A, et al. Validation and verification of LAMP, ISO, and VIDAS UP methods for detection of Escherichia coli O157: H7 in different food matrices[J]. Journal of Microbiological Methods,2019,165:105697. doi: 10.1016/j.mimet.2019.105697
|
[14] |
史晓娟, 马建敏, 孙丽莉, 等. 食源性沙门氏菌鉴定和血清分型能力验证[J]. 食品安全质量检测学报,2018(7):1534−1537. [SHI X J, MA J M, SUN L L, et al. Validation of foodborne Salmonella identification and serotyping capabilities[J]. Journal of Food Safety and Quality,2018(7):1534−1537. doi: 10.3969/j.issn.2095-0381.2018.07.012
SHI X J, MA J M, SUN L L, et al. Validation of foodborne Salmonella identification and serotyping capabilities[J]. Journal of Food Safety and Quality, 2018(7): 1534-1537. doi: 10.3969/j.issn.2095-0381.2018.07.012
|
[15] |
潘海建. 上海市部分医院致泻性大肠杆菌和弯曲菌临床分离株的耐药性与分子分型[D]. 上海: 上海交通大学, 2016.
PAN H J. Antimicrobial susceptibility and subtyping of clinical isolates of diarrheagenic Escherichia coli and Campylobacter from shanghai hospitals[D]. Shanghai: Shanghai Jiao Tong University, 2016.
|
[16] |
WANG X, WEI Z, YANG K, et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology,2019,37(12):1513−1520. doi: 10.1038/s41587-019-0328-3
|
[17] |
DAVIES E V, CRAIG W, FOTHERGILL J L, et al. The role of temperate bacteriophages in bacterial infection[J]. Fems Microbiology Letters,2016,363(5):15.
|
[18] |
LOUIS M B, EDUARDO R, MARIE T. The adaptation of temperate bacteriophages to their host genomes[J]. Molecular Biology & Evolution,2013,30(4):737−751.
|
[19] |
BRUSSOW H, CANCHAYA C, HARDT W D. Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion[J]. Microbiology and Molecular Biology Reviews,2004,68(3):560−602. doi: 10.1128/MMBR.68.3.560-602.2004
|
[20] |
MOTTAWEA W, DUCEPPE M O, DUPRAS A, et al. Salmonella enterica prophage sequence profiles reflect genome diversity and can be used for high discrimination subtyping[J]. Frontiers in Microbiology,2018,9:836. doi: 10.3389/fmicb.2018.00836
|
[21] |
何晓青, 刘小玲. 20个省市区鼠伤寒沙门氏菌噬菌体分型[J]. 中华预防医学杂志,1994,28(3):136−139. [HE X Q, LIU X L. Phage typing of Salmonella typhimurium in 20 provinces and autonomous regions municipalities of China[J]. Chinese Journal of Preventive Medicine,1994,28(3):136−139.
HE X Q, LIU X L. Phage typing of Salmonella typhimurium in 20 provinces and autonomous regions municipalities of China[J]. Chinese Journal of Preventive Medicine, 1994, 28(3): 136-139.
|
[22] |
SUMRALL E T, RHRIG C, HUPFELD M, et al. Glycotyping and specific separation of Listeria monocytogenes with a novel bacteriophage protein tool kit[J]. Applied and Environmental Microbiology,2020,86(13):e00612−20.
|
[23] |
SCHWARTZ D C, CANTOR C R. Separation of yeast chromosome-size DNA by pulsed field gradient gel electrophoresis[J]. Cell,1984,37(1):67−75. doi: 10.1016/0092-8674(84)90301-5
|
[24] |
RIPABELLI G, TAMBURRO M, GUERRIZIO G, et al. Tracking multidrug-resistant Klebsiella pneumoniae from an Italian hospital: Molecular epidemiology and surveillance by PFGE, RAPD and PCR-Based resistance genes prevalence[J]. Current Microbiology,2018,75(8):977−987. doi: 10.1007/s00284-018-1475-3
|
[25] |
CHEN M, LI L P, WANG R, et al. PCR detection and PFGE genotype analyses of Streptococcal clinical isolates from tilapia in China[J]. Veterinary Microbiology,2012,159(3-4):526−530. doi: 10.1016/j.vetmic.2012.04.035
|
[26] |
叶蕊, 石丽媛, 王鹏, 等. 脉冲场凝胶电泳技术简介及其在细菌分子分型中的应用[J]. 中国媒介生物学及控制杂志,2013,24(2):182−185. [YE R, WANG L Y, WANG P, et al. Brief introduction of pulsed-field gel electrophoresis and its applicationin bacterial molecular typing[J]. Chinese Journal of Vector Biology and Control Chin J Vector Biol Control,2013,24(2):182−185.
YE R, WANG L Y, WANG P, et al. Brief introduction of pulsed⁃field gel electrophoresis and its applicationin bacterial molecular typing[J]. Chinese Journal of Vector Biology and Control | Chin J Vector Biol Control, 2013, 24(2): 182-185.
|
[27] |
FRAZAO M R, DE S R A, MEDEIROS M I C, et al. Molecular typing of Campylobacter jejuni strains: Comparison among four different techniques[J]. Brazilian Journal of Microbiology,2020,51(2):519−525. doi: 10.1007/s42770-019-00218-8
|
[28] |
LYTSY B, ENGSTRAND L, GUSTAFSSON A, et al. Time to review the gold standard for genotyping vancomycin-resistant enterococci in epidemiology: Comparing whole-genome sequencing with PFGE and MLST in three suspected outbreaks in Sweden during 2013~2015[J]. Infection Genetics & Evolution,2017,54:74−80.
|
[29] |
NEOH H M, TAN X E, SAPRI H F, et al. Pulsed-field gel electrophoresis (PFGE): A review of the "gold standard" for bacteria typing and current alternatives[J]. Infection, Genetics and Evolution:Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases,2019,74:103935. doi: 10.1016/j.meegid.2019.103935
|
[30] |
ABU A S W, BENNEDSEN M, ON S L W, et al. Assessment of PCR-DGGE for the identification of diverse Helicobacter species, and application to faecal samples from zoo animals to determine Helicobacter prevalence[J]. Journal of Medical Microbiology,2003,52(9):765−771. doi: 10.1099/jmm.0.05314-0
|
[31] |
SUBASINGHE R M, SAMARAJEEWA A D, SCROGGINS R, et al. Evaluation of denaturing gradient gel electrophoresis (DGGE) and next generation sequencing (NGS) in combination with enrichment culture techniques to identify bacteria in commercial microbial-based products[J]. Journal of Microbiological Methods,2019,161:118−130. doi: 10.1016/j.mimet.2019.04.017
|
[32] |
ERCOLINI D. PCR-DGGE fingerprinting: Novel strategies for detection of microbes in food[J]. Journal of Microbiological Methods,2004,56(3):297−314. doi: 10.1016/j.mimet.2003.11.006
|
[33] |
TEMMERMAN R, SCHEIRLINCK I, HUYS G, et al. Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis[J]. Applied and Environmental Microbiology,2003,69(1):220−226. doi: 10.1128/AEM.69.1.220-226.2003
|
[34] |
XIAO J, LIU Y, WANG M, et al. Detection of Mycoplasma pneumoniae P1 subtype variations by denaturing gradient gel electrophoresis[J]. Diagnostic Microbiology and Infectious Disease,2014,78(1):24−28. doi: 10.1016/j.diagmicrobio.2013.08.008
|
[35] |
NDIAYE N A, HAMDOUCHE Y, KANE A, et al. Application of PCR-DGGE to the study of dynamics and biodiversity of microbial contaminants during the processing of Hibiscus sabdariffa drinks and concentrates[J]. Fruits,2016,71(3):141−149. doi: 10.1051/fruits/2016001
|
[36] |
BAFFONI L, GAGGIA F, GAROFOLO G, et al. Evidence of Campylobacter jejuni reduction in broilers with early synbiotic administration[J]. International Journal of Food Microbiology,2017,251:41−47. doi: 10.1016/j.ijfoodmicro.2017.04.001
|
[37] |
JAMES V, THEARITH K, LUPSKI R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes[J]. Nucleic Acids Research,1991,19(24):6823−6831. doi: 10.1093/nar/19.24.6823
|
[38] |
BILUNG L M, CHAI L S, TAHAR A S, et al. Prevalence, genetic heterogeneity, and antibiotic resistance profile of Listeria spp. and Listeria monocytogenes at farm level: A highlight of ERIC-PCR and BOX-PCR to reveal genetic diversity[J]. Biomed Research International,2018,2018:3067494.
|
[39] |
HASHEMI A, BAGHBANI A F. The effective differentiation of Salmonella isolates using four PCR-based typing methods[J]. Journal of Applied Microbiology,2015,118(6):1530−1540. doi: 10.1111/jam.12805
|
[40] |
CHERIF A, BRUSETTI L, BORIN S, et al. Genetic relationship in the 'Bacillus cereus group' by rep-PCR fingerprinting and sequencing of a Bacillus anthracis specific rep-PCR fragment[J]. Journal of Applied Microbiology,2003,94(6):1108−1119. doi: 10.1046/j.1365-2672.2003.01945.x
|
[41] |
FRYE S R, HEALY M, TANG Y W, et al. Molecular strain typing using repetitive sequence–based PCR[M]. Advanced Techniques in Diagnostic Microbiology. Springer US, 2006: 444-471.
|
[42] |
THOMRONGSUWANNAKIJ T, BLACKALL P J, DJORDJEVIC S P, et al. A comparison of virulence genes, antimicrobial resistance profiles and genetic diversity of avian pathogenic Escherichia coli (APEC) isolates from broilers and broiler breeders in Thailand and Australia[J]. Avian Pathology: Journal of the WVPA,2020:1−27.
|
[43] |
OMALEKI L, BEATSON S A, THOMRONGSUWANNAKIJ T, et al. Phase variation in latB associated with a fatal Pasteurella multocida outbreak in captive squirrel gliders[J]. Veterinary Microbiology,2020,243:108612. doi: 10.1016/j.vetmic.2020.108612
|
[44] |
WANG S H, STEVENSON K B, HINES L, et al. Evaluation of repetitive element polymerase chain reaction for surveillance of methicillin-resistant Staphylococcus aureus at a large academic medical center and community hospitals[J]. Diagnostic Microbiology and Infectious Disease,2015,81(1):13−17. doi: 10.1016/j.diagmicrobio.2014.05.005
|
[45] |
MAZUREK G H, REDDY V, MARSTON B J, et al. DNA fingerprinting by infrequent-restriction-site amplification[J]. Journal of Clinical Microbiology,1996,34(10):2386−2390. doi: 10.1128/jcm.34.10.2386-2390.1996
|
[46] |
REN C, HU C, LUO P, et al. Genotyping of Vibrio alginolyticus isolates from Daya Bay by infrequent-restriction-site PCR and pulsed-field gel electrophoresis[J]. Molecular and Cellular Probes,2008,22(4):267−271. doi: 10.1016/j.mcp.2008.05.003
|
[47] |
KRAWCZYK B, KUR J, STOJOWSKA S K, et al. Principles and applications of ligation mediated PCR methods for DNA-based typing of microbial organisms[J]. Acta Biochimica Polonica,2016,63(1):39−52.
|
[48] |
GARAIZAR J, LOPEZ M N, LACONCHA I, et al. Suitability of PCR fingerprinting, infrequent-restriction-site PCR, and pulsed-field gel electrophoresis, combined with computerized gel analysis, in library typing of Salmonella enterica serovar enteritidis[J]. Applied and Environmental Microbiology,2000,66(12):5273−5281. doi: 10.1128/AEM.66.12.5273-5281.2000
|
[49] |
SU L H, CHIU C H, WU T L, et al. Molecular epidemiology of Salmonella enterica serovar enteritidis isolated in Taiwan[J]. Microbiology and Immunology,2002,46(12):833−840. doi: 10.1111/j.1348-0421.2002.tb02770.x
|
[50] |
VOS P, HOGERS R, BLEEKER M, et al. AFLP: A new technique for DNA fingerprinting[J]. Nucleic Acids Research,1995,23(21):4407−4414. doi: 10.1093/nar/23.21.4407
|
[51] |
BLEARS M J, GRANDIS S A D, LEE H, et al. Amplified fragment length polymorphism (AFLP): A review of the procedure and its applications[J]. Journal of Industrial Microbiology & Biotechnology,1998,21(3):99−114.
|
[52] |
RADEMAKER J L, HOSTE B, LOUWS F J, et al. Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system[J]. International Journal of Systematic & Evolutionary Microbiology,2000,50(2):665−677.
|
[53] |
GAAFAR A, UNZAGA A J, CISTERNA R, et al. Evaluation of a modified single-enzyme amplified-fragment length polymorphism technique for fingerprinting and differentiating of Mycobactetium kansasii type I isolates[J]. Journal of Clinical Microbiology,2003,41(8):3846−3850. doi: 10.1128/JCM.41.8.3846-3850.2003
|
[54] |
BERTANI G, SARDARO M L S, NEVIANI E, et al. AFLP protocol comparison for microbial diversity fingerprinting[J]. Journal of Applied Genetics,2019,60(2):217−223. doi: 10.1007/s13353-019-00492-0
|
[55] |
ALTER T, FEHLHABER K. Genomic fingerprinting of Campylobacter jejuni-strains from turkeys by AFLP-analysis[J]. Berliner and Munchener Tierarztliche Wochenschrift,2003,116(11-12):454−459.
|
[56] |
BLANCO C S, GONZALEZ C C, LOPEZ M R, et al. A strategy based on amplified fragment length polymorphism (AFLP) for routine genotyping of Nontuberculous mycobacteria at the clinical laboratory[J]. Molecular Biology Reports,2020,47(5):3397−3405. doi: 10.1007/s11033-020-05420-8
|
[57] |
KILLGORE G, THOMPSON A, JOHNSON S, et al. Comparison of seven techniques for typing international epidemic strains of Clostfidium difficile: Restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing[J]. Journal of Clinical Microbiology,2008,46(2):431−437. doi: 10.1128/JCM.01484-07
|
[58] |
SU C, ZHANG X, DUBEY J P. Genotyping of Toxoplasma gondii by multilocus PCR-RFLP markers: A high resolution and simple method for identification of parasites[J]. International Journal for Parasitology,2006,36(7):841−848. doi: 10.1016/j.ijpara.2006.03.003
|
[59] |
MIRHENDI H, MAKIMURA K, KHORAMIZADEH M, et al. A one-enzyme PCR-RFLP assay for identification of six medically important candida species[J]. Nippon Ishinkin Gakkai Zasshi,2006,47(3):225−229. doi: 10.3314/jjmm.47.225
|
[60] |
LOZANO D Y, RICHLEN M L, SMITH T B, et al. Development and validation of PCR-RFLP assay for identification of Gambierdiscus species in the Greater Caribbean Region[J]. Journal of Applied Phycology,2018,30(6):3529−3540. doi: 10.1007/s10811-018-1491-5
|
[61] |
TABAR E A, STAJI H, MAHDAVI A. Comparative restriction enzyme mapping of Campylobacter jejuni isolates from turkeys and broilers based on flaA flagellar gene using HpyF3I endonuclease[J]. Folia Microbiologica,2019,64(2):189−195. doi: 10.1007/s12223-018-0643-y
|
[62] |
CONESA A, DIESER S, BARBERIS C, et al. Differentiation of non-aureus Staphylococci species isolated from bovine mastitis by PCR-RFLP of groEL and gap genes in comparison to MALDI-TOF mass spectrometry[J]. Microbial Pathogenesis,2020,149:104489. doi: 10.1016/j.micpath.2020.104489
|
[63] |
TCHATCHOUANG C D K, FRI J, DE S M, et al. Listeriosis outbreak in South Africa: A comparative analysis with previously reported cases worldwide[J]. Microorganisms,2020,8(1):135. doi: 10.3390/microorganisms8010135
|
[64] |
LI Y, GU Y X, LÜ J C, et al. Laboratory study on the gastroenteritis outbreak caused by a multidrug-resistant Campylobacter coli in China[J]. Foodborne Pathogens and Disease,2020,17(3):187−193. doi: 10.1089/fpd.2019.2681
|
[65] |
OLSEN J S, SCHOLZ H, FILLO S, et al. Analysis of the genetic distribution among members of Clostridium botulinum group I using a novel multilocus sequence typing (MLST) assay[J]. Journal of Microbiological Methods,2014,96:84−91. doi: 10.1016/j.mimet.2013.11.003
|
[66] |
TAKAHASHI H, IWAKAWA A, OHSHIMA C, et al. A rapid typing method for Listeria monocytogenes based on high-throughput multilocus sequence typing (Hi-MLST)[J]. International Journal of Food Microbiology,2017,243:84−89. doi: 10.1016/j.ijfoodmicro.2016.12.009
|
[67] |
GAIARSA S, BIFFIGNANDI G B, ESPOSITO E P, et al. Comparative analysis of the two Acinetobacter baumannii multilocus sequence typing (MLST) schemes[J]. Frontiers in Microbiology,2019,3(10):930.
|
[68] |
MEEHAN C J, MORIS P, KOHL T A, et al. The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology[J]. Ebiomedicine,2018,37:410−416. doi: 10.1016/j.ebiom.2018.10.013
|
[69] |
JOSEPH L A, FRANCOIS W L K, CHEN J, et al. Comparison of molecular subtyping and antimicrobial resistance detection methods used in a large multistate outbreak of extensively drug-resistant Campylobacter jejuni infections linked to pet store puppies[J]. Journal of Clinical Microbiology,2020,58(10):e00771−20.
|
[70] |
HSU C H, HARRISON L, MUKHERJEE S, et al. Core genome multilocus sequence typing for food animal source attribution of human Campylobacter jejuni infections[J]. Pathogens,2020,9(7):532. doi: 10.3390/pathogens9070532
|
[71] |
CODY A J, BRAY J E, JOLLEY K A, et al. Core genome multilocus sequence typing scheme for stable, comparative analyses of Campylobacter jejuni and C-coli human disease isolates[J]. Journal of Clinical Microbiology,2017,55(7):2086−2097. doi: 10.1128/JCM.00080-17
|
[72] |
BEKAL S, BERRY C, REIMER A R, et al. Usefulness of high-quality core genome single-nucleotide variant analysis for subtyping the highly clonal and the most prevalent Salmonella enterica serovar heidelberg clone in the context of outbreak investigations[J]. Journal of Clinical Microbiology,2016,54(2):289−295. doi: 10.1128/JCM.02200-15
|
[73] |
SCHURCH A C, ARREDONDO A S, WILLEMS R J L, et al. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches[J]. Clinical Microbiology and Infection:European Society of Clinical Microbiology and Infectious Diseases,2018,24(4):350−354.
|
[74] |
LIU W L, ZHAO H, QIU Z G, et al. Identifying geographic origins of the Escherichia coli isolates from food by a method based on single-nucleotide polymorphisms[J]. Journal of Microbiological Methods,2020,168:105807. doi: 10.1016/j.mimet.2019.105807
|
[75] |
GUO Q Y, YANG J L, FORSYTHE S J, et al. DNA sequence-based re-assessment of archived Cronobacter sakazakii strains isolated from dairy products imported into China between 2005 and 2006[J]. Bmc Genomics,2018,19(1):506. doi: 10.1186/s12864-018-4881-9
|
[76] |
KURODA M, SERIZAWA M, OKUTANI A, et al. Genome-wide single nucleotide polymorphism typing method for identification of Bacillus anthracis species and strains among B. cereus group species[J]. Journal of Clinical Microbiology,2010,48(8):2821−2829. doi: 10.1128/JCM.00137-10
|
[77] |
SANDRIN T R, GOLDSTEIN J E, SCHUMAKER S. MALDI TOF MS profiling of bacteria at the strain level: A review[J]. Mass Spectrometry Reviews,2013,32(3):188−217. doi: 10.1002/mas.21359
|
[78] |
FENG B, SHI H, XU F, et al. FTIR-assisted MALDI-TOF MS for the identification and typing of bacteria[J]. Analytica Chimica Acta,2020,1111:75−82. doi: 10.1016/j.aca.2020.03.037
|
[79] |
SAUGET M, VALOT B, BERTRAND X, et al. Can MALDI-TOF Mass spectrometry reasonably type bacteria?[J]. Trends in Microbiology,2017,25(6):447−455. doi: 10.1016/j.tim.2016.12.006
|
[80] |
STEENSELS D, DEPLANO A, DENIS O, et al. MALDI-TOF MS typing of a nosocomial methicillin-resistant Staphylococcus aureus outbreak in a neonatal intensive care unit[J]. Acta Clinica Belgica,2017,72(4):219−225. doi: 10.1080/17843286.2016.1198521
|
[81] |
ANGELETTI S, CICCOZZI M. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiology: An updating review[J]. Infection Genetics and Evolution,2019,76:104063. doi: 10.1016/j.meegid.2019.104063
|
[82] |
BIZZINI A, DURUSSEL C, BILLE J, et al. Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory[J]. Journal of Clinical Microbiology,2010,48(5):1549−1554. doi: 10.1128/JCM.01794-09
|
1. |
王潇,李栋,张立攀. 杜仲叶不同溶剂萃取物对ACE酶活的抑制作用. 河南化工. 2024(01): 25-30 .
![]() | |
2. |
李硕,尼格尔热依·亚迪卡尔,朱金芳,冯作山,邓术升. 小白杏生理落果中多酚提取及体外抗氧化活性分析. 新疆农业科学. 2024(03): 623-631 .
![]() | |
3. |
梅瀚,曹金凤,刘世巍,马建龙,丁建海. 超声辅助提取葡萄籽中原花青素工艺及抗氧化活性研究. 广东化工. 2023(05): 38-41 .
![]() | |
4. |
徐兰程,杨佳燕,徐惠,陈金玉,何碧梅,王晓平,辛桂瑜. 响应面法优化芒果核黄酮提取工艺研究. 中国饲料. 2023(08): 18-22 .
![]() | |
5. |
马嘉洁,赵端端,全世航,郇淇童,郝帅,李坤,朴春香,李官浩,李红梅,牟柏德. 紫苏叶黄酮、多酚提取工艺优化及不同品种抗氧化活性比较. 食品工业科技. 2023(12): 344-352 .
![]() | |
6. |
杨郑州,李曦,谢晓娜. 芒果皮多酚提取工艺的优化及抗氧化能力分析. 江西农业学报. 2023(05): 103-108 .
![]() | |
7. |
陈徐回,熊财智,梅瀚,马建龙,曹金凤,刘世巍,丁建海. 葡萄籽抗氧化活性成分研究. 广州化工. 2023(09): 77-80 .
![]() | |
8. |
康超,聂辉,黄双全,伍淑婕,刘凤听. 芒果不同部位多酚化合物抗氧化和抑菌活性研究. 食品科技. 2023(07): 170-175 .
![]() | |
9. |
万荣,农斯伟,杨郑州,卢春静,朱正杰,侯宪斌. 芒果皮核生物学功能及其在动物养殖中的应用研究进展. 饲料研究. 2022(08): 147-149 .
![]() | |
10. |
高国燕,蒋林树,年芳,王慧. 不同省份小果沙棘叶中黄酮类化合物含量测定及体外抗氧化能力评价. 中国饲料. 2022(10): 30-35 .
![]() | |
11. |
郭荣珍,梁茂文,刘纯友,杨锋,丘静. 芒果核提取物对冷藏过程中水牛肉品质的影响. 广西科技大学学报. 2022(04): 100-106 .
![]() | |
12. |
关淑文,潘予琮,寇伟,年芳,蒋林树. 基于高效液相色谱特征指纹图谱法探究不同品种苜蓿中黄酮抗氧化活性的谱-效关系. 动物营养学报. 2022(12): 8086-8096 .
![]() |