DU Qinling, YANG Fang, XU Wen, et al. Inhibitory Effect of Tremella fuciformis Polysaccharide on Starch Digestive Enzymes and Its Action Mechanism[J]. Science and Technology of Food Industry, 2022, 43(2): 120−125. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060084.
Citation: DU Qinling, YANG Fang, XU Wen, et al. Inhibitory Effect of Tremella fuciformis Polysaccharide on Starch Digestive Enzymes and Its Action Mechanism[J]. Science and Technology of Food Industry, 2022, 43(2): 120−125. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060084.

Inhibitory Effect of Tremella fuciformis Polysaccharide on Starch Digestive Enzymes and Its Action Mechanism

  • Objective: To investigate the inhibitory effect of Tremella fuciformis polysaccharide (TP) on pancreatic α-amylase and α-glucosidase and its action mechanism. Methods: TP with a total sugar content of 92.45% was obtained by alkaline extraction from dried Tremella fuciformis, enzymatic deproteinization and column chromatography separation in turn. The inhibitory effect of TP on pancreatic α-amylase and α-glucosidase was measured by visible spectrophotometry, and its action on the structures of these two enzymes was characterized by fluorescence spectrometry and circular dichroism. Results: TP could inhibit the activities of these two enzymes, and its inhibition on pancreatic α-amylase was significantly higher than that on α-glucosidase, and its half inhibitory concentrations (IC50) on these two enzymes were 7.6835 and 16.9306 mg/mL, respectively. TP inhibited the activity of the enzymes by interacting with them. TP interacted strongly with pancreatic α-amylase. It could statically quench pancreatic α-amylase and change its secondary structure. However, TP interacted weakly with α-glucosidase and could not change its secondary structure. Conclusion: TP inhibited the activity of starch-digestive enzymes by interacting with them.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return