Action Mechanism of Inonotus obliquus in the Treatment of Diabetes and the Material Basis of Pharmacodynamics Based on Network Pharmacology
-
Graphical Abstract
-
Abstract
Objective: In this paper, exploring the hypoglycemic mechanism and functional ingredients of Inonotus obliquus based on network pharmacology and molecular docking technology. Methods: The main components of Inonotus obliquus were obtained by literature mining. Diabetes-related genes were collected by DisGeNET, GAD and OMIM database. The relationship network of compounds-target was constructed through Cytoscpe software. The target was analyzed by GO and KEGG in DAVID database. The KEGG signal pathway was visualized. Component-Target network analysis results were verified by PyRx molecular docking. Results: The 19 compounds of Inonotus obliquus were screened, including inonotic acid, trametenolic acid, inotodiol and inonotusane D etc, as the effective ingredients for Inonotus obliquus of lower blood sugar. Act on 21 key targets such as AKT1, AGTR1, ADRA2B and HSP90AA1, additionally participating in 89 signal pathways through these technologies. Molecular docking analysis showed that hydrogen bonding and hydrophobic effecting maybe the main forms of interaction. Conclusion: In this study, 19 core active compounds were screened out based on the research on hypoglycemic efficacy basis of the main components of Inonotus obliquus in anti-diabetes, which would provide a scientific basis for the development and quality control of Inonotus obliquus related products.
-
-