ZHAO Yingyuan, ZHANG Shengmeng, LI Yifan, et al. Interaction between Astaxanthin and Whey Protein Based on Fluorescence and Ultraviolet Spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(2): 126−134. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040126.
Citation: ZHAO Yingyuan, ZHANG Shengmeng, LI Yifan, et al. Interaction between Astaxanthin and Whey Protein Based on Fluorescence and Ultraviolet Spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(2): 126−134. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040126.

Interaction between Astaxanthin and Whey Protein Based on Fluorescence and Ultraviolet Spectroscopy

More Information
  • Received Date: April 12, 2021
  • Accepted Date: November 02, 2021
  • Available Online: November 15, 2021
  • The molecule self-assembly technology was used to prepare astaxanthin/whey protein nanocomplex, and the interaction mechanism between astaxanthin (AST) and whey protein was studied. By controlling the proportion of astaxanthin organic solution and whey protein aqueous phase, whey protein (α-lactalbumin, β-lactoglobulin, whey protein concentrate and bovine serum albumin) and astaxanthin were used for preparing well formed H aggregates or J aggregates astaxanthin/bovine serum albumin nanocomplexes, the resultant H/J AWC-NPs were spherical with 150~430 nm diameter, polydispersity index (PDI) showed good dispersity and −12~−1 mV Zeta potential measured by dynamic light scattering (DLS). Both H aggregates and J aggregates astaxanthin/whey protein nanocomplexes were near spherical with clear and smooth edges by transmission electron microscopy (TEM). The analysis by ultraviolet-visible absorption spectra revealed that the absorption maximum λmax of astaxanthin H aggregates was shifted from 480 nm of astaxanthin monomer blue to 388 nm, and the absorption maximum λmax of astaxanthin J aggregates was shifted red, showing a parallel peak at about 519 and 556 nm. The fluorescence spectrum analysis showed that the fluorescence intensity of astaxanthin/whey protein nanocomplex was significantly enhanced due to the specific structure of astaxanthin aggregates, and hydrophobic amino acids and hydrophobic regions in whey protein were exposed. In this study, the water dispersion of astaxanthin and its aggregates and the characteristics of whey protein carrier were investigated to provide theoretical basis for its subsequent development and application in the field of food and medicine.
  • [1]
    张丽敏, 华艳艳, 孙玉梅, 等. 红发夫酵母生物合成虾青素天然促进剂的研究[J]. 河南工业大学学报(自然科学版),2011,32(1):66−69. [ZHANG L M, HUA Y Y, SUN Y M, et al. Study on natural promoter of astaxanthin biosynthesis by Phaffia rhodozyma[J]. Journal of Henan University of Technology (Natural Science),2011,32(1):66−69.
    [2]
    LU L P, HU T P, XU Z G. Structural characterization of astaxanthin aggregates as revealed by analysis and simulation of optical spectra[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2017,185(3):85−92.
    [3]
    HORMOZI M, GHOREISHI S, BAHARVAND P. Astaxanthin induces apoptosis and increases activity of antioxidant enzymes in LS-180 cells[J]. Artificial Cells, Nanomedicine, and Biotechnology,2019,47(1):891−895. doi: 10.1080/21691401.2019.1580286
    [4]
    LI J J, GUO C Y, WU J Y. Astaxanthin in liver health and disease: A potential therapeutic agent[J]. Drug Design, Development and Therapy,2020,14:2275−2285. doi: 10.2147/DDDT.S230749
    [5]
    赵英源, 刘俊霞, 陈姝彤, 等. 虾青素生理活性的研究进展[J]. 中国海洋药物,2020,39(3):80−88. [ZHAO Y Y, LIU J X, CHEN S T, et al. Advances in studies on the physiological activity of astaxanthin[J]. Chinese Marine Pharmacology,2020,39(3):80−88.
    [6]
    王宝贝. 雨生红球藻的光保护机制及脂肪酸与虾青素合成的相互关系[D]. 厦门: 厦门大学, 2014.

    WANG B B. Photoprotective mechanism and the relationship between fatty acids and astaxanthin synthesis in Rhodococcus pluvii[D]. Xiamen: Xiamen University, 2014.
    [7]
    董学卫, 孙敏, 颜世超, 等. 虾青素药理学作用及其在眼科疾病治疗中的应用[J]. 山东化工,2020,49(22):133−135. [DONG X W, SUN M, YAN S C, et al. Pharmacological effects of astaxanthin and its application in the treatment of ophthalmic diseases[J]. Shandong Chemical Industry,2020,49(22):133−135. doi: 10.3969/j.issn.1008-021X.2020.22.054
    [8]
    张涛, 邓思, 陈艳红, 等. 虾青素和β-胡萝卜素的抗氧化活性及其协同作用研究[J]. 食品与发酵工业,2021,47(9):8−15. [ZHANG T, DENG S, CHEN Y H, et al. Study on antioxidant activity and synergistic effect of astaxanthin and β-carotene[J]. Food and Fermentation Industries,2021,47(9):8−15.
    [9]
    ALIDADI M, JAMIALAHMADI T, CICERO A, et al. The potential role of plant-derived natural products in improving arterial stiffness: A review of dietary intervention studies[J]. Trends in Food Science & Technology,2020,99(4):426−440.
    [10]
    潘丽, 常振刚, 陈娟, 等. 虾青素的生理功能及其制剂技术的研究进展[J]. 河南工业大学学报(自然科学版),2019,40(6):123−129. [PAN L, CHANG Z G, CHEN J, et al. Research progress on physiological function and preparation technology of astaxanthin[J]. Journal of Henan University of Technology (Natural Science),2019,40(6):123−129.
    [11]
    刘永峰, 张薇, 刘婷婷, 等. 乳蛋白中乳清蛋白与酪蛋白组成、特性及应用的研究进展[J]. 食品工业科技,2020,41(23):354−358. [LIU Y F, ZHANG W, LIU T T, et al. Research progress on the composition, properties and application of whey protein and casein in milk protein[J]. Science and Technology of Food Industry,2020,41(23):354−358.
    [12]
    BRIX S, BOVETTO L, FRITSCHÉ R, et al. Immunostimulatory potential of β-lactoglobulin preparations: Effects caused by endotoxin contamination[J]. Journal of Allergy and Clinical Immunology,2003,112(6):1216−1222. doi: 10.1016/j.jaci.2003.08.047
    [13]
    杨若愚. 乳清蛋白与运动营养[J]. 中国科技信息,2008(23):272−274. [YANG R Y. Whey protein and sports nutrition[J]. China Science and Technology Information,2008(23):272−274. doi: 10.3969/j.issn.1001-8972.2008.23.185
    [14]
    周衍香, 刘中洋. 乳清蛋白在慢性消耗性疾病营养支持中的应用[J]. 中国食物与营养,2019,25(9):83−86. [ZHOU Y X, LIU Z Y. Application of whey protein in nutritional support of chronic wasting disease[J]. Food and Nutrition in China,2019,25(9):83−86. doi: 10.3969/j.issn.1006-9577.2019.09.019
    [15]
    马彬. 食物中乳清蛋白对高强度运动能力的促进作用分析[J]. 食品安全质量检测学报,2019,10(24):8424−8431. [MA B. Analysis of promoting effect of whey protein in food on high intensity exercise ability[J]. Journal of Food Safety and Quality Inspection,2019,10(24):8424−8431.
    [16]
    江萍. 基于Caco-2细胞模型的乳清蛋白纳米载体提高姜黄素吸收率的研究[D]. 北京: 北京化工大学, 2018.

    JIANG P. The study of improving the absorption rate of curcumin by using whey protein nanocarrier based on Caco-2 cell model[D]. Beijing: Beijing University of Chemical Technology, 2018.
    [17]
    SHAFAEI Z, GHALANDARI B, VASEGHI A, et al. β-lactoglobulin: An efficient nanocarrier for advanced delivery systems[J]. Nanomedicine: Nanotechnology, Biology, and Medicine,2017,13(5):1685−1692. doi: 10.1016/j.nano.2017.03.007
    [18]
    贾前生, 刘远洋. 乳铁蛋白基姜黄素纳米载体颗粒的制备及其对大鼠抗疲劳能力的影响[J]. 食品工业科技,2021,42(13):26−32. [JIA Q S, LIU Y Y. Preparation of lactoferrin-based curcumin nanocarrier particles and its effect on fatigue resistance in rats[J]. Science and Technology of Food Industry,2021,42(13):26−32.
    [19]
    张晓燕. 南极磷虾壳中虾青素提取纯化与纳米包载[D]. 青岛: 中国海洋大学, 2013.

    ZHANG X Y. Extraction, purification and nanoencapsulation of astaxanthin from krill shell[D]. Qingdao: Ocean University of China, 2013.
    [20]
    吴婉仪, 李璐, 解新安, 等. 基于响应面法构建虾青素纳米乳液[J]. 食品工业科技,2018,39(10):204−210. [WU W Y, LI L, XIE X A, et al. Preparation of astaxanthin nanoemulsion based on response surface methodology[J]. Science and Technology of Food Industry,2018,39(10):204−210.
    [21]
    PREETHI S, ABARNA K, NITHYASRI M, et al. Synthesis and characterization of chitosan/zinc oxide nanocomposite for antibacterial activity onto cotton fabrics and dye degradation applications[J]. International Journal of Biological Macromolecules,2020,164(5):2779−2787.
    [22]
    QIAO X, YANG L, HU X X, et al. Characterization and evaluation of inclusion complexes between astaxanthin esters with different molecular structures and hydroxypropyl-β-cyclodextrin[J]. Food Hydrocolloids,2021,110(5):106208.
    [23]
    LIU Y X, HUANG L, LI D H, et al. Re-assembled oleic acid-protein complexes as nano-vehicles for astaxanthin: Multispectral analysis and molecular docking[J]. Food Hydrocolloids,2020,103(5):105689.
    [24]
    GRZEGORZ Z, EWA M, AGNIESZKA K, et al. Structure of supramolecular astaxanthin aggregates revealed by molecular dynamics and electronic circular dichroism spectroscopy[J]. Physical Chemistry Chemical Physics,2018,20(26):18038−18046. doi: 10.1039/C8CP01742E
    [25]
    赵英源. 虾青素/DNA/壳聚糖纳米复合物的制备及其稳定性研究[D]. 青岛: 中国海洋大学, 2015.

    ZHAO Y Y. Preparation and stability of astaxanthin/DNA/chitosan nanocomposite[D]. Qingdao: Ocean University of China, 2015.
    [26]
    李敬, 关磊, 刘俊丽, 等. 一种易溶于冷水的雨生红球藻色素纳米冻干粉及其制备与应用: 中国, 109419819A[P]. 2019-03-05.

    LI J, GUAN L, LIU J L, et al. The invention relates to a nanometer lyophilized pigment of Chlorella pluvii soluble in cold water and its preparation and application: China, 109419819A[P]. 2019-03-05.
    [27]
    ZHAO Y, LI J, DAI M, et al. Discriminative preparation of stable H- or J-aggregates of astaxanthin in waterborne chitosan/DNA nanoparticles[J]. Chemistry Letters,2019,48(4):345−348. doi: 10.1246/cl.180940
    [28]
    刘俊丽, 代明琴, 杨昭, 等. 虾青素/天然DNA/壳聚糖纳米粒对紫外诱导的小鼠皮肤光老化的改善作用[J]. 中国海洋药物,2019,38(4):32−38. [LIU J L, DAI M Q, YANG Z, et al. Effects of astaxanthin/natural DNA/chitosan nanoparticles on uv induced skin photoaging in mice[J]. China Marine Pharmaceutics,2019,38(4):32−38.
    [29]
    WU YI JHEN, WU YU CHIUAN, CHEN I FEN, et al. Reparative effects of astaxanthin-hyaluronan nanoaggregates against retrorsine-CCl₄-induced liver fibrosis and necrosis[J]. Molecules (Basel, Switzerland),2018,23(4):726. doi: 10.3390/molecules23040726
    [30]
    LIU C Z, ZHANG S Z, DAVID J M, et al. Design of astaxanthin-loaded core-shell nanoparticles consisting of chitosan oligosaccharides and poly(lactic-co-glycolic acid): enhancement of water solubility, stability, and bioavailability[J]. Journal of Agricultural and Food Chemistry,2019,67(18):5113−5121. doi: 10.1021/acs.jafc.8b06963
    [31]
    董欣, 王丽燕. 氨基酸紫外光谱的再测定[J]. 德州学院学报,2015,31(2):44−46. [DONG X, WANG L Y. Determination of amino acids by ultraviolet spectroscopy[J]. Journal of Dezhou University,2015,31(2):44−46. doi: 10.3969/j.issn.1004-9444.2015.02.011
    [32]
    ZHAO Y Y, LIU J L, GUAN L, et al. Fabrication of aqueous nanodispersion from natural DNA and chitosan as eminent carriers for water-insoluble bioactives[J]. International Journal of Biological Macromolecules,2018,118(5):263−270.
    [33]
    孙亚婷. 发酵乳饮料的调配与聚合乳清蛋白对发酵乳饮料稳定性的影响[D]. 哈尔滨: 东北农业大学, 2016.

    SUN Y T. The preparation of fermented milk beverage and the influence of polymerized whey protein on the stability of fermented milk beverage[D]. Harbin: Northeast Agricultural University, 2016.
    [34]
    QIU B, GUO L, CHEN M, et a1. Study on interaction between a new fluorescent probe2-methylbenzo[b] [1, 10] phenanthrolin-7(12H)-one and BSA[J]. The Analyst,2011,136(5):973−978. doi: 10.1039/C0AN00595A
    [35]
    房文汇, 里佐威, 李占龙, 等. 类胡萝卜素的分子光谱研究[J]. 物理学报,2012,61(15):170−176. [FANG W H, LI Z W, LI Z L, et al. Molecular spectral study of carotenoids[J]. Journal of Physics,2012,61(15):170−176.
    [36]
    鲁瑞梅, 肖毅, 李佳慧, 等. 基于水溶性共轭聚合物荧光增强测定精氨酸[J]. 分析科学学报,2017,33(3):323−326. [LU R M, XIAO Y, LI J H, et al. Determination of arginine by fluorescence enhancement of water-soluble conjugated polymer[J]. Journal of Analytical Science,2017,33(3):323−326.
    [37]
    张静, 陈薇晓, 朱亚先, 等. 一羟基芘对血清白蛋白构象变化的光谱学研究[A]. 中国毒理学会分析毒理专业委员会. 第八届全国分析毒理学大会暨中国毒理学会分析毒理专业委员会第五届会员代表大会论文摘要集[C]// 中国毒理学会分析毒理专业委员会: 中国毒理学会, 2014: 4.

    ZHANG J, CHEN W X, ZHU Y X, et al. Spectroscopic study of conformational changes of serum albumin by a hydroxypyrene[A]. Toxicology Committee of the Chinese Society of Toxicology. The Eighth National Conference of Analytical Toxicology and the Fifth Conference of the Analytical Toxicology Committee of the Chinese Society of Toxicology[C]// Analytical Toxicology Committee of Chinese Society of Toxicology: Chinese Society of Toxicology, 2014: 4.
    [38]
    张明, 方冰, 张录达, 等. 牛α-乳白蛋白-亚油酸复合物的结构及抗肿瘤活性[J]. 光谱学与光谱分析,2015,35(9):2609−2612. [ZHANG M, FANG B, ZHANG L D, et al. Structure and anti-tumor activity of bovine α-lactalbumin after binding linoleic acid[J]. Spectroscopy and Spectral Analysis,2015,35(9):2609−2612.
    [39]
    BURSTEZIN E A, VEDENKINA N S, LYKOVA M N. Fluorescence and the location of tryptophan residues in protein molec ules[J]. Phorothemisrry and Phofobioloay,1973,18(4):263−279.
    [40]
    李翠侠, 刘绍璞, 刘忠芳, 等. 荧光光谱法研究托拉塞米与牛血清白蛋白的相互作用及其分析应用[J]. 化学学报,2011,69(12):1408−1414. [LI C X, LIU S P, LIU Z F, et al. Study on the interaction between tolasemide and bovine serum albumin by fluorescence spectrometry and its application[J]. Journal of Chemical,2011,69(12):1408−1414.
  • Cited by

    Periodical cited type(10)

    1. 舒丽枝,时苗苗,张牧焓,卞欢,徐为民,王道营. 卟啉类化合物和游离铁对鸡胸肉肌原纤维蛋白理化特性的影响. 江苏农业学报. 2024(10): 1952-1961 .
    2. 王晓芸,高霞,尤娟,尹涛,刘茹. 超声预处理对鲜湿鱼粉品质的影响及其作用机制. 食品科学. 2024(23): 213-220 .
    3. 韩馨蕊,李颖,刘苗苗,范鑫,冯莉,曹云刚. 安石榴苷与焦磷酸钠对肌原纤维蛋白氧化稳定性及凝胶性能的影响. 食品科学. 2022(08): 15-21 .
    4. 莫玲,香庆文,李晶晶,叶玉萍,赵超超. 孕哺期摄入氧化乳蛋白对子代小鼠机体氧化还原状态的影响. 食品科学技术学报. 2021(03): 122-128 .
    5. 梁恽红,卢涵,张香美. 蛋白二、三级结构对鱼糜凝胶质构和持水力的影响及其测定方法研究进展. 东北农业大学学报. 2021(10): 87-96 .
    6. 谢晨,熊泽语,李慧,金素莱曼,陈百科,包海蓉. 金针菇多糖对三文鱼片冻藏期间品质的影响. 食品与发酵工业. 2021(22): 178-183 .
    7. 刘芳芳,林婉玲,李来好,吴燕燕,杨少玲,黄卉,杨贤庆,林织. 海鲈鱼糜加工及凝胶形成过程中蛋白质的变化机理. 食品科学. 2020(14): 15-22 .
    8. 冯程,Manonose Tariro Upenyu,李志豪,王萍,余雄伟,付琴利,李述刚. 丙烯醛对籽瓜种仁蛋白质结构及凝胶特性影响研究. 食品科技. 2019(09): 66-71 .
    9. 刁小琴,关海宁,李杨,刘丽美. 高压均质对肌原纤维蛋白乳化特性及结构的影响. 食品与发酵工业. 2019(18): 107-112 .
    10. 郭兆斌,马纪兵,张丽,陈骋,陈立业,刘勇,韩玲,余群力. 传统风干牦牛肉加工过程中肌原纤维蛋白氧化对氨基酸的影响. 食品与发酵工业. 2019(22): 202-207+212 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (524) PDF downloads (63) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return