ZHANG Qi, WANG Yibing, SHEN Naikun, et al. Screening and Identification of Chitinase-producing Strain GXUN-20 and Optimization of Its Enzyme Producing Conditions[J]. Science and Technology of Food Industry, 2021, 42(24): 119−127. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040118.
Citation: ZHANG Qi, WANG Yibing, SHEN Naikun, et al. Screening and Identification of Chitinase-producing Strain GXUN-20 and Optimization of Its Enzyme Producing Conditions[J]. Science and Technology of Food Industry, 2021, 42(24): 119−127. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040118.

Screening and Identification of Chitinase-producing Strain GXUN-20 and Optimization of Its Enzyme Producing Conditions

More Information
  • Received Date: April 12, 2021
  • Available Online: October 14, 2021
  • In order to improve that utilization rate and added value of seafood wastes such as shrimp and crab. The chitinase-producing strain GXUN-20 was isolated, purified and screened from the mudflat sediments(shrimp, crab and shell wastes) near Damenhai Duck Farm in Hepu county, Guangxi Province. After physiological and biochemical identification and the construction of phylogenetic tree based on 16S rDNA sequence, the strain was preliminarily identified as Lysobacter firmicutimachus. Taking chitinase activity as index, the single factors optimization of fermentation conditions were conducted for strain GXUN-20. On the basis of four factors(nitrogen source concentration, initial pH of fermentation broth, chitin powder concentration and inoculation amount) that had significant results in the single factor optimization, four levels of orthogonal experiment and variance analysis of orthogonal experiment were carried out. The results showed that the concentration of nitrogen source had a significant effect on enzyme production(P=0.013<0.05). When the nitrogen source was 1 g/L soybean cake powder, chitin powder was 20 g/L, the inoculation amount was 3%, the initial pH of the fermentation broth was 8.4, and the fermentation temperature was 30 ℃and 200 r/min for 6 days, the chitinase activity in the fermentation broth reached the maximum value of 0.965 U/mL, which was 6.89 times of the enzyme activity before optimization. The results of this study would provide the basic data and experimental methods for the further development and application of the chitinase produced by GXUN-20 strain.
  • [1]
    张岩, 关菲菲, 伍宁丰, 等. 几丁质脱乙酰酶的研究进展[J]. 生物技术通报,2019,35(11):179−186. [ZHANG Yan, GUAN Feifei, WU Ningfeng, et al. Research progress on chitin deacetylase[J]. Biotechnology Bulletin,2019,35(11):179−186.
    [2]
    CHRISTIAN S, AUZA L G, DAVID K, et al. Conversion of chitin to defined chitosan oligomers: Current status and future prospects[J]. Marine Drugs,2019,17(8):1−22.
    [3]
    MUÑOZ I, RODRÍGUEZ C, GILLET D, et al. Life cycle assessment of chitosan production in india and europe[J]. The International Journal of Life Cycle Assessment,2018,23(5):1151−1160. doi: 10.1007/s11367-017-1290-2
    [4]
    SANTOS V P, MARQUES N, MAIA P, et al. Seafood waste as attractive source of chitin and chitosan production and their applications[J]. International Journal of Molecular Sciences,2020,21(12):1−17.
    [5]
    PILLAI C, PAUL W, SHARMA C P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation[J]. Progress in Polymer Science,2009,34(7):641−678. doi: 10.1016/j.progpolymsci.2009.04.001
    [6]
    张晓彤, 张晓萌, 苏永成, 等. 海洋Arthrobacter protophormiae CDA2-2-2产几丁质脱乙酰酶发酵条件优化[J]. 食品工业科技,2021,42(8):95−101. [ZHANG Xiaotong, ZHANG Xiaomeng, SU Yongcheng, et al. Optimization of fermentation conditions for the production of chitin deacetylase from Arthrobacter protophormiae CDA2-2-2[J]. Science and Technology of Food Industry,2021,42(8):95−101.
    [7]
    BART V, FIEN A, SARAH O, et al. Chemically versus thermally processed brown shrimp shells or chinese mitten crab as a source of chitin, nutrients or salts and as microbial stimulant in soilless strawberry cultivation[J]. The Science of the Total Environment,2021,771:1−13.
    [8]
    王海东, 陈飚, 伦镜盛, 等. 产几丁质酶菌株SWCH-6的筛选、鉴定及其产酶条件的优化研究[J]. 微生物学通报,2008,35(5):705−711. [WANG Haidong, CHEN Biao, LUN Jingsheng, et al. Screening, identification of a chitinolytic bacterium strain swch-6 and its optimal chitinase fermentation conditions[J]. Microbiology,2008,35(5):705−711. doi: 10.3969/j.issn.0253-2654.2008.05.011
    [9]
    CHEN Chuchu, LI Dagang, HU Qinqin, et al. Properties of polymethyl methacrylate-based nanocomposites: Reinforced with ultra-long chitin nanofiber extracted from crab shells[J]. Materials and Design,2014,56:1049−1056. doi: 10.1016/j.matdes.2013.11.057
    [10]
    RATTAN L. Restoring soil quality to mitigate soil degradation[J]. Sustainability,2015,7(5):5875−5895. doi: 10.3390/su7055875
    [11]
    SINGH D P, PRABHA R, RENU S, et al. Agrowaste bioconversion and microbial fortification have prospects for soil health, crop productivity, and eco-enterprising[J]. International Journal of Recycling of Organic Waste in Agriculture,2019,8:457−472. doi: 10.1007/s40093-019-0243-0
    [12]
    傅丽君, 杨磊, 黄锦泉. 产几丁质酶Bt-016菌株发酵条件优化探究[J]. 莆田学院学报,2019,26(5):46−50, 99. [FU Lijun, YANG Lei, HUANG Jinquan. Optimization of fermentation conditions of chitinase producing bt-016 strain[J]. Journal of Putian University,2019,26(5):46−50, 99. doi: 10.3969/j.issn.1672-4143.2019.05.013
    [13]
    SAIMA M, KUDDUS R. Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase[J]. Journal of Genetic Engineering and Biotechnology,2013,11(1):39−46. doi: 10.1016/j.jgeb.2013.03.001
    [14]
    LIU Cong, SHEN Naikun, WU Jiafa, et al. Cloning, expression and characterization of a chitinase from Paenibacillus chitinolyticus strain UMBR 0002[J]. Peer J,2020,8:1−23.
    [15]
    龚军辉, 王晶. 稀释涂布平板法计数活菌的方法简介[J]. 生物学教学,2018,43(2):70−71. [GONG Junhui, JING Wong. Brief introduction of the method of counting live bacteria by dilution coating plate method[J]. Biology Teaching,2018,43(2):70−71. doi: 10.3969/j.issn.1004-7549.2018.02.036
    [16]
    王敏, 辛二娜, 王瑶, 等. 几丁质降解菌的分离鉴定与产酶条件探究[J]. 山西农业科学,2021,49(4):420−424. [WANG Min, XIN Erna, WANG Yao, et al. Isolation and identification of chitin-degrading bacterium and exploration of the optimal culture conditions for enzyme production[J]. Journal of Shanxi Agricultural Sciences,2021,49(4):420−424. doi: 10.3969/j.issn.1002-2481.2021.04.05
    [17]
    柴金龙, 王敏卜, 杭加豪, 等. 产几丁质脱乙酰酶海洋细菌的筛选鉴定及产酶条件优化[J]. 中国酿造,2019,38(10):89−95. [CHAI Jinlong, WANG Minbo, HANG Jiahao, et al. Screening identification and enzyme production conditions optimization of chitin deacetylase-producing marine bacteria[J]. China Brewing,2019,38(10):89−95. doi: 10.11882/j.issn.0254-5071.2019.10.018
    [18]
    陈瑜, 孔海深. 伯杰鉴定细菌学手册第9版简介[J]. 国外医学(微生物学分册),1995,18(6):32,48. [CHEN Yu, KONG Haishen. Introduction to berger’s manual of bacteriology (9th edition)[J]. Foreign Medical Sciences(Microbiology),1995,18(6):32,48.
    [19]
    张丰薇, 林敏, 区海蕴, 等. 鸡源乳酸乳球菌的分离鉴定与抑菌实验[J]. 江西畜牧兽医杂志,2019(3):7−10. [ZHANG Fengwei, LIN Min, QU Haiyun, et al. Isolation, identification and antibacterial experiment of Lactococcus lactis from chicken[J]. Jiangxi Journal of Animal Husbandry and Veterinary Medicine,2019(3):7−10. doi: 10.3969/j.issn.1004-2342.2019.03.004
    [20]
    MIESS H, VAN TRAPPEN S, CLEENWERCK I, et al. Reclassification of Pseudomonas sp. pb-6250t as Lysobacter firmicutimachus sp. nov.[J]. International Journal of Systematic and Evolutionary Microbiology,2016,66(10):4162−4166. doi: 10.1099/ijsem.0.001329
    [21]
    刘刚, 张俭, 魏莲花, 等. 炭末明胶微量管在细菌鉴定中的应用[J]. 中国感染控制杂志,2004(4):335−337. [LIU Gang, ZHANG James, WEI Lianhua, et al. Application of charcoal powder microtube method in the identification of bacteria[J]. Chinese Journal of Infection Control,2004(4):335−337. doi: 10.3969/j.issn.1671-9638.2004.04.018
    [22]
    刘洪祥, 张文燕, 曹晓云. 《美国药典》(35/NF30)附录微生物特征描述、鉴定和菌株分型[J]. 中国药品标准,2013,14(6):440−443,446. [LIU Hongxiang, ZHANG Wenyan, CAO Xiaoyun, et al. USP35/NF30 microbial characterization, identification and strain typing[J]. Drug Standards of China,2013,14(6):440−443,446.
    [23]
    SPADARO D, DROBY S. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists[J]. Trends in Food Science & Technology,2016,47:39−49.
    [24]
    万云宝, 陈宇红, 蒋学飞, 等. 一株生防烟管菌几丁质酶表达及抗真菌活性[J]. 四川大学学报(自然科学版),2021,58(3):165−172. [WAN Yunbao, CHEN Yuhong, JIANG Xuefei, et al. Expression and antifungal activity of chitinase from biocontrol agent Bjerkandera adusta[J]. Journal of Sichuan University(Natural Science Edition),2021,58(3):165−172.
    [25]
    AJINATH S D, SANGEETA P V EYARKAI N, et al. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review[J]. Critical Reviews in Food Science and Nutrition,2019,59(9):1498−1513. doi: 10.1080/10408398.2017.1417235
    [26]
    RAZA W, LING N, ZHANG R, et al. Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies[J]. Critical Reviews in Biotechnology,2017,37(2):202−212. doi: 10.3109/07388551.2015.1130683
    [27]
    田曼丽, 王杰. 微生物生长特性的试验研究[J]. 科学技术创新,2021(8):81−82. [TIAN Manli, WANG Jie. Experimental study on microbial growth characteristics[J]. Science and Technology Innovation,2021(8):81−82. doi: 10.3969/j.issn.1673-1328.2021.08.038
    [28]
    许尚华. 硝酸钠促地衣芽胞杆菌WX-02高产聚γ-谷氨酸的蛋白质组学研究[D]. 武汉: 华中农业大学, 2013.

    XU Shanghua. Comparative proteomic study of effect of sodium nitrate on poly-gamma-glutamic acid biosynthesis by Bacillus licheniformis wx-o2[D]. Wuhan: Huazhong Agricultural University, 2013.
    [29]
    张雷, 张蕾, 王玲莉, 等. γ-聚谷氨酸生产菌株的鉴定及发酵培养基优化[J]. 食品工业科技,2020,41(20):64−71. [ZHANG Lei, ZHANG Lei, WANG Lingli, et al. Identification and optimization of fermentational condition of γ-polyglutamic acid producing strain[J]. Science and Technology of Food Industry,2020,41(20):64−71.
    [30]
    CHEN Q H, HE G Q, ALI M. Optimization of medium composition for the production of elastase by Bacillus sp. el31410 with response surface methodology[J]. Enzyme and Microbial Technology,2002,30(5):667−672. doi: 10.1016/S0141-0229(02)00028-5
    [31]
    马璐, 杨驰, 肖冬来, 等. 碳氮源对广叶绣球菌液体发酵的影响[J]. 中国食用菌,2020,39(10):37−41, 45. [MA Lu, YANG Chi, XIAO Donglai, et al. Liquid fermentation of Sparassis latifolia on different carbon and nitrogen source combinations[J]. Edible Fungi of China,2020,39(10):37−41, 45.
    [32]
    刘泽. 温度、pH、溶解氧对发酵过程的影响[J]. 青春岁月,2016(13):246−247. [LIU Ze. Effects of temperature, pH and dissolved oxygen on fermentation process[J]. Blooming Season,2016(13):246−247.
    [33]
    徐培. 类芽孢杆菌甲壳素酶的酶学性质、热稳定性改造及应用研究[D]. 广州: 华南理工大学, 2019.

    XU Pei. Characterization, thermostability engineering and application of the chitinases from Paenibacillus pasadenensis[D]. Guangzhou: South China University of Technology, 2019.
    [34]
    QIAN Guoliang, WANG Yansheng, QIAN Dongyu, et al. Selection of available suicide vectors for gene mutagenesis using chia(a chitinase encoding gene) as a new reporter and primary functional analysis of chia in Lysobacter enzymogenes strain oh11[J]. World Journal of Microbiology and Biotechnology,2012,28(2):549−557. doi: 10.1007/s11274-011-0846-8
    [35]
    朱慧, 王云霞, 胡白石, 等. 产酶溶杆菌OH11菌株几丁质酶基因的克隆与表达[J]. 南京农业大学学报,2008,31(1):47−50. [ZHU Hui, WANG Yunxia, HU Baishi, et al. Cloning and expression of a chitinase gene from Lysobacter enzymogenes strain oh11[J]. Journal of Nanjing Agricultural University,2008,31(1):47−50.
    [36]
    陈立功, 吴家葳, 张庆芳, 等. 产低温几丁质酶菌株的筛选、鉴定与产酶条件优化[J]. 食品工业科技,2020,41(23):85−90,98. [CHEN Ligong, WU Jiawei, ZHANG Qingfang, et al. Screening and identification of a cold-adapted chitinolytic bacterium strain and optimization of its chitinase fermentation conditions[J]. Science and Technology of Food Industry,2020,41(23):85−90,98.
  • Cited by

    Periodical cited type(12)

    1. 赵忠祥,王家林. 酶解法制备油莎豆粕抗氧化肽工艺优化. 现代农业科技. 2024(17): 154-158 .
    2. 伍津瑶,殷明月,杨美花,康晶晶. 茶树菇降压肽制备工艺优化. 食品与机械. 2024(11): 172-179 .
    3. 段帅,吴晓彤. 油莎豆粕抗氧化肽的制备及其稳定性研究. 中国粮油学报. 2023(01): 80-89 .
    4. 颜阿娜,洪燕婷,王琳,黄茂坤. 鲭鱼酶解工艺双响应面法优化及抗氧化活性研究. 通化师范学院学报. 2023(04): 59-67 .
    5. 张敏君,段雪伟,王燕,杨慧文,刘冰,向文静,由天辉. 构树根皮活性成分乙醇提取工艺优化及其抗氧化活性分析. 食品工业科技. 2023(11): 196-203 . 本站查看
    6. 王燕,段雪伟,张敏君,杨慧文,刘冰,由天辉. 响应面法优化黑玉米粒多糖提取工艺及其抗氧化活性分析. 食品工业科技. 2023(22): 191-200 . 本站查看
    7. 詹炜君,金星鹏,陈俪锟,陈丽. 马鲛鱼黄嘌呤氧化酶抑制肽的制备工艺优化及抗氧化活性研究. 食品安全质量检测学报. 2023(22): 278-287 .
    8. 陈冰冰,欧颖仪,叶灏铎,金昶言,梁兴唐,尹艳镇,郑韵英,曹庸,苗建银. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究. 食品工业科技. 2022(03): 1-9 . 本站查看
    9. 沈晓静,黄璐璐,聂凡秋,王青,杨俊滔,颜成慧,姜薇薇. 云南小粒咖啡花多糖提取工艺优化及其抗氧化活性分析. 食品工业科技. 2022(04): 238-245 . 本站查看
    10. 许依能,纪登杰,杨威,马洁,陈丽. 超声辅助酶法制备南极磷虾抗菌肽的工艺优化. 中国食品添加剂. 2022(05): 73-80 .
    11. 段帅,张德建,姚玉军,吴晓彤. 油莎豆营养价值及加工应用研究进展. 食品科技. 2022(07): 149-154 .
    12. 陈冰冰,杨奕,李嘉颐,金昶言,程缤霈,邓泳琪,林碧敏,梁东,唐德剑,孟莉,苗建银. 富硒辣木籽蛋白降压肽的酶法制备、硒含量及稳定性研究. 食品与机械. 2022(08): 213-221 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (215) PDF downloads (31) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return