Citation: | XIONG Wenfei, LI Ya, WANG Lifeng. Electrostatic Interaction of Ovalbumin-Chitosan on the Effects of Protein Structure and Thermal Properties[J]. Science and Technology of Food Industry, 2021, 42(24): 55−59. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040087. |
[1] |
WEISS J, SALMINEN H, MOLL P, et al. Use of molecular interactions and mesoscopic scale transitions to modulate protein-polysaccharide structures[J]. Advances in Colloid and Interface Science,2019,271:101987. doi: 10.1016/j.cis.2019.07.008
|
[2] |
WEI Z, HUANG Q. Assembly of protein-polysaccharide complexes for delivery of bioactive ingredients: A perspective paper[J]. Journal of Agricultural and Food Chemistry,2019,67(5):1344−1352. doi: 10.1021/acs.jafc.8b06063
|
[3] |
TIMILSENA Y P, AKANBI T O, KHALID N, et al. Complex coacervation: Principles, mechanisms and applications in microencapsulation[J]. International Journal of Biological Macromolecules,2019,121:1276−1286. doi: 10.1016/j.ijbiomac.2018.10.144
|
[4] |
XU A Y, MELTON L D, JAMESON G B, et al. Structural mechanism of complex assemblies: Characterisation of beta-lactoglobulin and pectin interactions[J]. Soft Matter,2015,11(34):6790−6799. doi: 10.1039/C5SM01378J
|
[5] |
WANG L C, LI L S, XU N, et al. Effect of carboxymethylcellulose on the affinity between lysozyme and liposome monolayers: evidence for its bacteriostatic mechanism[J]. Food Hydrocolloids,2020,98:105263. doi: 10.1016/j.foodhyd.2019.105263
|
[6] |
LI Z S, WANG Y T, PEI Y Q, et al. Effect of substitution degree on carboxymethylcellulose interaction with lysozyme[J]. Food Hydrocolloids,2017,62:222−229. doi: 10.1016/j.foodhyd.2016.07.020
|
[7] |
MAKSHAKOVA O N, BOGDANOVA L R, FAIZULLIN D A, et al. Interaction-induced structural transformation of lysozyme and kappa-carrageenan in binary complexes[J]. Carbohydrate Polymers,2021,252:117181. doi: 10.1016/j.carbpol.2020.117181
|
[8] |
汪吴晶, 佟平, 陈红兵, 等. 鸡蛋中卵白蛋白和溶菌酶相互作用对其结构和致敏性的影响[J]. 食品科学,2020,41(6):25−33. [WANG W J, TONG P, CHEN H B, et al. Effects of interaction on the structure and potential allergenicity of ovalbumin and lysozyme[J]. Food Science,2020,41(6):25−33. doi: 10.7506/spkx1002-6630-20190218-094
|
[9] |
于滨, 迟玉杰. 糖基化对卵白蛋白分子特性及乳化性的影响[J]. 中国农业科学,2009,42(7):2499−2504. [YU B, CHI Y J. Effect of glycosylation on molecular characteristics and emulsifying properties of ovalbumin[J]. Scientia Agricultura Sinica,2009,42(7):2499−2504. doi: 10.3864/j.issn.0578-1752.2009.07.030
|
[10] |
许美玉, 王希希, 黄群, 等. 酶法改善卵白蛋白乳化性研究[J]. 食品工业科技,2017,38(8):150−155. [XU M Y, WANG X X, HUANG Q, et al. Improving emulsifying property of ovalbumin with enzymatic modification[J]. Science and Technology of Food Industry,2017,38(8):150−155.
|
[11] |
熊舟翼, 马美湖, 卢素芳, 等. 酶法与非酶法磷酸化改性食品蛋白质的研究进展[J]. 食品工业科技,2018,39(21):310−319. [XIONG Z Y, MA M H, LU S F, et al. Research progress of enzymatic and non-enzymatic phosphorylation of food proteins[J]. Science and Technology of Food Industry,2018,39(21):310−319.
|
[12] |
NIU F, DONG Y T, SHEN F, et al. Phase separation behavior and structural analysis of ovalbumin-gum arabic complex coacervation[J]. Food Hydrocolloids,2015,43:1−7. doi: 10.1016/j.foodhyd.2014.02.009
|
[13] |
NIU F, KOU M X, FAN J M, et al. Structural characteristics and rheological properties of ovalbumin-gum arabic complex coacervates[J]. Food Chemistry,2018,260:1−6. doi: 10.1016/j.foodchem.2018.03.141
|
[14] |
NIU F G, ZHOU J Z, NIU D B, et al. Synergistic effects of ovalbumin/gum arabic complexes on the stability of emulsions exposed to environmental stress[J]. Food Hydrocolloids,2015,47:14−20. doi: 10.1016/j.foodhyd.2015.01.002
|
[15] |
XIONG W F, REN C, JIN W P, et al. Ovalbumin-chitosan complex coacervation: Phase behavior, thermodynamic and rheological properties[J]. Food Hydrocolloids,2016,61:895−902. doi: 10.1016/j.foodhyd.2016.07.018
|
[16] |
XIONG W F, REN C, TIAN M, et al. Emulsion stability and dilatational viscoelasticity of ovalbumin/chitosan complexes at the oil-in-water interface[J]. Food Chemistry,2018,252:181−188. doi: 10.1016/j.foodchem.2018.01.067
|
[17] |
赵金红, 白洁, 张清, 等. 基于差示扫描量热法研究喷雾干燥鸡蛋全粉热转变温度[J]. 食品科学,2019,40(15):150−155. [ZHAO J H, BAI J, ZHANG Q, et al. Thermal transition temperatures of spray-dried whole egg determined by differential scanning calorimetry[J]. Food Science,2019,40(15):150−155.
|
[18] |
ZHAO M, XIONG W F, CHEN B X, et al. Enhancing the solubility and foam ability of rice glutelin by heat treatment at pH12: Insight into protein structure[J]. Food Hydrocolloids,2020,103:105626. doi: 10.1016/j.foodhyd.2019.105626
|
[19] |
NISBET A D, SAUNDRY R H, MOIR A J G, et al. The complete amino-acid sequence of hen ovalbumin[J]. European Journal of Biochemistry,1981,115(2):335−345. doi: 10.1111/j.1432-1033.1981.tb05243.x
|
[20] |
STEIN P E, LESLIE A G W, Finch J T, et al. Crystal structure of uncleaved ovalbumin at 1·95 Å resolution[J]. Journal of Molecular Biology,1991,221(3):941−959. doi: 10.1016/0022-2836(91)80185-W
|
[21] |
REN C, XIONG W F, PENG D F, et al. Effects of thermal sterilization on soy protein isolate/polyphenol complexes: Aspects of structure, in vitro digestibility and antioxidant activity[J]. Food Research International,2018,112:284−290. doi: 10.1016/j.foodres.2018.06.034
|
[22] |
PEI Y Q, LI Z S, MCCLEMENTS D J, et al. Comparison of structural and physicochemical properties of lysozyme/carboxymethylcellulose complexes and microgels[J]. Food Research International,2019,122:273−282. doi: 10.1016/j.foodres.2019.03.071
|
[23] |
张晓, 杨锋, 赵笑蕾. 热处理对卵白蛋白理化性质及其ACE抑制活性的影响[J]. 食品研究与开发,2020,41(11):34−40. [ZHANG X, YANG F, ZHAO X L. Effects of heat treatment on the physicochemical properties of ovalbumin and its ACE inhibiting activity[J]. Food Research and Development,2020,41(11):34−40.
|
[24] |
XIONG W F, WANG Y T, ZhANG C L, et al. High intensity ultrasound modified ovalbumin: Structure, interface and gelation properties[J]. Ultrasonics Sonochemistry,2016,31:302−309. doi: 10.1016/j.ultsonch.2016.01.014
|
[25] |
LECHEVALIER V, CROGUENNEC T, PEZENNEC S, et al. Ovalbumin, ovotransferrin, lysozyme: Three model proteins for structural modifications at the air-water interface[J]. Journal of Agricultural and Food Chemistry,2003,51(21):6354−6361. doi: 10.1021/jf034184n
|
[26] |
KATO A, TAKAGI T. Formation of intermolecular. beta.-sheet structure during heat denaturation of ovalbumin[J]. Journal of Agricultural and Food Chemistry,1988,36(6):1156−1159. doi: 10.1021/jf00084a007
|
[27] |
ZHANG Q, DONG H M, GAO J, et al. Field pea protein isolate/chitosan complex coacervates: Formation and characterization[J]. Carbohydrate Polymers,2020,250:116925. doi: 10.1016/j.carbpol.2020.116925
|
[28] |
XIONG W F, REN C, LI J, et al. Enhancing the photostability and bioaccessibility of resveratrol using ovalbumin-carboxymethylcellulose nanocomplexes and nanoparticles[J]. Food & Function,2018,9(7):3788−3797.
|
[29] |
HUANG G Q, SUN Y T, XIAO J X, et al. Complex coacervation of soybean protein isolate and chitosan[J]. Food Chemistry,2012,135(2):534−539. doi: 10.1016/j.foodchem.2012.04.140
|
[30] |
LI Y Y, GUO X L, LIN P F, et al. Preparation and functional properties of blend films of gliadins and chitosan[J]. Carbohydrate Polymers,2010,81(2):484−490. doi: 10.1016/j.carbpol.2010.03.005
|