XIONG Wenfei, LI Ya, WANG Lifeng. Electrostatic Interaction of Ovalbumin-Chitosan on the Effects of Protein Structure and Thermal Properties[J]. Science and Technology of Food Industry, 2021, 42(24): 55−59. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040087.
Citation: XIONG Wenfei, LI Ya, WANG Lifeng. Electrostatic Interaction of Ovalbumin-Chitosan on the Effects of Protein Structure and Thermal Properties[J]. Science and Technology of Food Industry, 2021, 42(24): 55−59. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040087.

Electrostatic Interaction of Ovalbumin-Chitosan on the Effects of Protein Structure and Thermal Properties

More Information
  • Received Date: April 08, 2021
  • Available Online: October 22, 2021
  • Understanding the effect of electrostatic interaction between protein and polysaccharide on the structure and thermal properties of protein could provide new insights into the mechanism of interfacial properties of electrostatic complexes. Herein, the effects of electrostatic interaction between ovalbumin(OVA) and chitosan(CS) on the secondary, tertiary structure and thermal properties of OVA were investigated by UV-vis spectroscopy, intrinsic fluorescence spectroscopy, circular dichroism, Fourier transform spectroscopy and differential scanning calorimetry. The results showed that both electrostatic repulsion and electrostatic attraction could cause the structure of OVA to unfold, which was mainly characterized by the migration of tryptophan residues to the hydrophilic region and the decrease of exposure degree. The contents of α-helix, β-turn and random coil decreased by 26.9%, 52.3% and 6.0%, respectively, and the β-sheet increased by 33.9%. In addition, the thermal denaturation temperature of OVA increased from 78 ℃ to 83 ℃ due to electrostatic binding. These findings could provide a reference for the use of polysaccharides to regulate the functional properties of OVA through electrostatic interaction.
  • [1]
    WEISS J, SALMINEN H, MOLL P, et al. Use of molecular interactions and mesoscopic scale transitions to modulate protein-polysaccharide structures[J]. Advances in Colloid and Interface Science,2019,271:101987. doi: 10.1016/j.cis.2019.07.008
    [2]
    WEI Z, HUANG Q. Assembly of protein-polysaccharide complexes for delivery of bioactive ingredients: A perspective paper[J]. Journal of Agricultural and Food Chemistry,2019,67(5):1344−1352. doi: 10.1021/acs.jafc.8b06063
    [3]
    TIMILSENA Y P, AKANBI T O, KHALID N, et al. Complex coacervation: Principles, mechanisms and applications in microencapsulation[J]. International Journal of Biological Macromolecules,2019,121:1276−1286. doi: 10.1016/j.ijbiomac.2018.10.144
    [4]
    XU A Y, MELTON L D, JAMESON G B, et al. Structural mechanism of complex assemblies: Characterisation of beta-lactoglobulin and pectin interactions[J]. Soft Matter,2015,11(34):6790−6799. doi: 10.1039/C5SM01378J
    [5]
    WANG L C, LI L S, XU N, et al. Effect of carboxymethylcellulose on the affinity between lysozyme and liposome monolayers: evidence for its bacteriostatic mechanism[J]. Food Hydrocolloids,2020,98:105263. doi: 10.1016/j.foodhyd.2019.105263
    [6]
    LI Z S, WANG Y T, PEI Y Q, et al. Effect of substitution degree on carboxymethylcellulose interaction with lysozyme[J]. Food Hydrocolloids,2017,62:222−229. doi: 10.1016/j.foodhyd.2016.07.020
    [7]
    MAKSHAKOVA O N, BOGDANOVA L R, FAIZULLIN D A, et al. Interaction-induced structural transformation of lysozyme and kappa-carrageenan in binary complexes[J]. Carbohydrate Polymers,2021,252:117181. doi: 10.1016/j.carbpol.2020.117181
    [8]
    汪吴晶, 佟平, 陈红兵, 等. 鸡蛋中卵白蛋白和溶菌酶相互作用对其结构和致敏性的影响[J]. 食品科学,2020,41(6):25−33. [WANG W J, TONG P, CHEN H B, et al. Effects of interaction on the structure and potential allergenicity of ovalbumin and lysozyme[J]. Food Science,2020,41(6):25−33. doi: 10.7506/spkx1002-6630-20190218-094
    [9]
    于滨, 迟玉杰. 糖基化对卵白蛋白分子特性及乳化性的影响[J]. 中国农业科学,2009,42(7):2499−2504. [YU B, CHI Y J. Effect of glycosylation on molecular characteristics and emulsifying properties of ovalbumin[J]. Scientia Agricultura Sinica,2009,42(7):2499−2504. doi: 10.3864/j.issn.0578-1752.2009.07.030
    [10]
    许美玉, 王希希, 黄群, 等. 酶法改善卵白蛋白乳化性研究[J]. 食品工业科技,2017,38(8):150−155. [XU M Y, WANG X X, HUANG Q, et al. Improving emulsifying property of ovalbumin with enzymatic modification[J]. Science and Technology of Food Industry,2017,38(8):150−155.
    [11]
    熊舟翼, 马美湖, 卢素芳, 等. 酶法与非酶法磷酸化改性食品蛋白质的研究进展[J]. 食品工业科技,2018,39(21):310−319. [XIONG Z Y, MA M H, LU S F, et al. Research progress of enzymatic and non-enzymatic phosphorylation of food proteins[J]. Science and Technology of Food Industry,2018,39(21):310−319.
    [12]
    NIU F, DONG Y T, SHEN F, et al. Phase separation behavior and structural analysis of ovalbumin-gum arabic complex coacervation[J]. Food Hydrocolloids,2015,43:1−7. doi: 10.1016/j.foodhyd.2014.02.009
    [13]
    NIU F, KOU M X, FAN J M, et al. Structural characteristics and rheological properties of ovalbumin-gum arabic complex coacervates[J]. Food Chemistry,2018,260:1−6. doi: 10.1016/j.foodchem.2018.03.141
    [14]
    NIU F G, ZHOU J Z, NIU D B, et al. Synergistic effects of ovalbumin/gum arabic complexes on the stability of emulsions exposed to environmental stress[J]. Food Hydrocolloids,2015,47:14−20. doi: 10.1016/j.foodhyd.2015.01.002
    [15]
    XIONG W F, REN C, JIN W P, et al. Ovalbumin-chitosan complex coacervation: Phase behavior, thermodynamic and rheological properties[J]. Food Hydrocolloids,2016,61:895−902. doi: 10.1016/j.foodhyd.2016.07.018
    [16]
    XIONG W F, REN C, TIAN M, et al. Emulsion stability and dilatational viscoelasticity of ovalbumin/chitosan complexes at the oil-in-water interface[J]. Food Chemistry,2018,252:181−188. doi: 10.1016/j.foodchem.2018.01.067
    [17]
    赵金红, 白洁, 张清, 等. 基于差示扫描量热法研究喷雾干燥鸡蛋全粉热转变温度[J]. 食品科学,2019,40(15):150−155. [ZHAO J H, BAI J, ZHANG Q, et al. Thermal transition temperatures of spray-dried whole egg determined by differential scanning calorimetry[J]. Food Science,2019,40(15):150−155.
    [18]
    ZHAO M, XIONG W F, CHEN B X, et al. Enhancing the solubility and foam ability of rice glutelin by heat treatment at pH12: Insight into protein structure[J]. Food Hydrocolloids,2020,103:105626. doi: 10.1016/j.foodhyd.2019.105626
    [19]
    NISBET A D, SAUNDRY R H, MOIR A J G, et al. The complete amino-acid sequence of hen ovalbumin[J]. European Journal of Biochemistry,1981,115(2):335−345. doi: 10.1111/j.1432-1033.1981.tb05243.x
    [20]
    STEIN P E, LESLIE A G W, Finch J T, et al. Crystal structure of uncleaved ovalbumin at 1·95 Å resolution[J]. Journal of Molecular Biology,1991,221(3):941−959. doi: 10.1016/0022-2836(91)80185-W
    [21]
    REN C, XIONG W F, PENG D F, et al. Effects of thermal sterilization on soy protein isolate/polyphenol complexes: Aspects of structure, in vitro digestibility and antioxidant activity[J]. Food Research International,2018,112:284−290. doi: 10.1016/j.foodres.2018.06.034
    [22]
    PEI Y Q, LI Z S, MCCLEMENTS D J, et al. Comparison of structural and physicochemical properties of lysozyme/carboxymethylcellulose complexes and microgels[J]. Food Research International,2019,122:273−282. doi: 10.1016/j.foodres.2019.03.071
    [23]
    张晓, 杨锋, 赵笑蕾. 热处理对卵白蛋白理化性质及其ACE抑制活性的影响[J]. 食品研究与开发,2020,41(11):34−40. [ZHANG X, YANG F, ZHAO X L. Effects of heat treatment on the physicochemical properties of ovalbumin and its ACE inhibiting activity[J]. Food Research and Development,2020,41(11):34−40.
    [24]
    XIONG W F, WANG Y T, ZhANG C L, et al. High intensity ultrasound modified ovalbumin: Structure, interface and gelation properties[J]. Ultrasonics Sonochemistry,2016,31:302−309. doi: 10.1016/j.ultsonch.2016.01.014
    [25]
    LECHEVALIER V, CROGUENNEC T, PEZENNEC S, et al. Ovalbumin, ovotransferrin, lysozyme: Three model proteins for structural modifications at the air-water interface[J]. Journal of Agricultural and Food Chemistry,2003,51(21):6354−6361. doi: 10.1021/jf034184n
    [26]
    KATO A, TAKAGI T. Formation of intermolecular. beta.-sheet structure during heat denaturation of ovalbumin[J]. Journal of Agricultural and Food Chemistry,1988,36(6):1156−1159. doi: 10.1021/jf00084a007
    [27]
    ZHANG Q, DONG H M, GAO J, et al. Field pea protein isolate/chitosan complex coacervates: Formation and characterization[J]. Carbohydrate Polymers,2020,250:116925. doi: 10.1016/j.carbpol.2020.116925
    [28]
    XIONG W F, REN C, LI J, et al. Enhancing the photostability and bioaccessibility of resveratrol using ovalbumin-carboxymethylcellulose nanocomplexes and nanoparticles[J]. Food & Function,2018,9(7):3788−3797.
    [29]
    HUANG G Q, SUN Y T, XIAO J X, et al. Complex coacervation of soybean protein isolate and chitosan[J]. Food Chemistry,2012,135(2):534−539. doi: 10.1016/j.foodchem.2012.04.140
    [30]
    LI Y Y, GUO X L, LIN P F, et al. Preparation and functional properties of blend films of gliadins and chitosan[J]. Carbohydrate Polymers,2010,81(2):484−490. doi: 10.1016/j.carbpol.2010.03.005
  • Cited by

    Periodical cited type(10)

    1. 舒丽枝,时苗苗,张牧焓,卞欢,徐为民,王道营. 卟啉类化合物和游离铁对鸡胸肉肌原纤维蛋白理化特性的影响. 江苏农业学报. 2024(10): 1952-1961 .
    2. 王晓芸,高霞,尤娟,尹涛,刘茹. 超声预处理对鲜湿鱼粉品质的影响及其作用机制. 食品科学. 2024(23): 213-220 .
    3. 韩馨蕊,李颖,刘苗苗,范鑫,冯莉,曹云刚. 安石榴苷与焦磷酸钠对肌原纤维蛋白氧化稳定性及凝胶性能的影响. 食品科学. 2022(08): 15-21 .
    4. 莫玲,香庆文,李晶晶,叶玉萍,赵超超. 孕哺期摄入氧化乳蛋白对子代小鼠机体氧化还原状态的影响. 食品科学技术学报. 2021(03): 122-128 .
    5. 梁恽红,卢涵,张香美. 蛋白二、三级结构对鱼糜凝胶质构和持水力的影响及其测定方法研究进展. 东北农业大学学报. 2021(10): 87-96 .
    6. 谢晨,熊泽语,李慧,金素莱曼,陈百科,包海蓉. 金针菇多糖对三文鱼片冻藏期间品质的影响. 食品与发酵工业. 2021(22): 178-183 .
    7. 刘芳芳,林婉玲,李来好,吴燕燕,杨少玲,黄卉,杨贤庆,林织. 海鲈鱼糜加工及凝胶形成过程中蛋白质的变化机理. 食品科学. 2020(14): 15-22 .
    8. 冯程,Manonose Tariro Upenyu,李志豪,王萍,余雄伟,付琴利,李述刚. 丙烯醛对籽瓜种仁蛋白质结构及凝胶特性影响研究. 食品科技. 2019(09): 66-71 .
    9. 刁小琴,关海宁,李杨,刘丽美. 高压均质对肌原纤维蛋白乳化特性及结构的影响. 食品与发酵工业. 2019(18): 107-112 .
    10. 郭兆斌,马纪兵,张丽,陈骋,陈立业,刘勇,韩玲,余群力. 传统风干牦牛肉加工过程中肌原纤维蛋白氧化对氨基酸的影响. 食品与发酵工业. 2019(22): 202-207+212 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (368) PDF downloads (34) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return