LU Tong, WANG Peng, LI Zhen, et al. Research on the Effect of Different Electrode Structures on the Response Effect of Chilled Chicken Breast Impedance[J]. Science and Technology of Food Industry, 2021, 42(21): 100−110. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040010.
Citation: LU Tong, WANG Peng, LI Zhen, et al. Research on the Effect of Different Electrode Structures on the Response Effect of Chilled Chicken Breast Impedance[J]. Science and Technology of Food Industry, 2021, 42(21): 100−110. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040010.

Research on the Effect of Different Electrode Structures on the Response Effect of Chilled Chicken Breast Impedance

More Information
  • Received Date: April 01, 2021
  • Available Online: September 02, 2021
  • The impedance amplitude and phase angle of chilled chicken breast were measured with needle electrode and chip electrode, and the relationship between the measurement direction and the thickness of the test sample and the impedance characteristic value of chilled chicken breast was studied. The method of combining the principal component analysis score map and the DI value was used to evaluate the ability of the two electrodes to distinguish the characteristic value of chicken breast impedance. Quantitative analysis of variance was carried out on the impedance spectra of chicken breast obtained by the needle electrode, and the statistical method was used to determine the response ability of the needle electrode to the thickness change of the test sample. The results showed that the impedance amplitude measured perpendicular to the direction of the muscle fibers of chicken breast meat was greater than the impedance amplitude measured in the direction parallel to the muscle fibers, which was consistent with the anisotropy of biological tissues. At the same frequency, the impedance amplitude when the thickness of the test sample was 40 mm was higher than the impedance amplitude when the thickness of the test sample was 20 mm. The needle electrode had a good effect on distinguishing characteristic values of impedance in different measurement directions with 85.47% distinction index. It was statistically significant to use the needle electrode to measure the difference conversion of the impedance characteristic value of the chicken breast from low frequency to high frequency to distinguish different sample thicknesses (P<0.05). The measurement of impedance characteristic values through the needle electrode perpendicular to the direction of the chicken breast muscle fiber has high accuracy, which can provide a reference for the subsequent use of electrical impedance technology to achieve online rapid detection of chicken breast.
  • [1]
    刘九生. 国际禽肉消费市场需求分析[J]. 中国畜牧业,2020(10):42−44. [Liu J S. Analysis on international demand of poultry meat consumption market[J]. China Animal Husbandry,2020(10):42−44. doi: 10.3969/j.issn.2095-2473.2020.10.018
    [2]
    农业农村部畜牧兽医局, 全国畜牧总站. 2020年肉鸡产业发展形势及2021年展望[J]. 中国畜牧业,2021(1):44−47. [Bureau of Animal Husbandry and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, National Animal Husbandry Station. Development situation of broiler industry in 2020 and prospect in 2021[J]. China Animal Husbandry,2021(1):44−47. doi: 10.3969/j.issn.2095-2473.2021.01.021
    [3]
    谷爽, 徐志远, 孙从佼, 等. 不同品种白羽肉鸡肌肉品质及营养成分的比较研究[J]. 中国家禽,2021,43(2):21−27. [Gu S, Xu Z Y, Sun C G, et al. Comparation of muscle quality and nutritional components in different white feather broilers′ breeds[J]. China Poultry,2021,43(2):21−27.
    [4]
    曹凯, 魏文松, 高原, 等. 肉品品质的可视化检测技术研究进展[J]. 食品科技,2021,46(2):281−286. [Cao K, Wei W S, Gao Y, et al. Progress on technology of visual inspection of meat quality[J]. Food Science and Technology,2021,46(2):281−286.
    [5]
    Grossi M, Riccò B. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review[J]. Journal of Sensors and Sensor Systems,2017,6(2):303−325. doi: 10.5194/jsss-6-303-2017
    [6]
    屠鹏, 边红霞. 静压力对苹果介电特性和胞内水分的影响[J]. 食品工业科技,2017,38(20):30−34. [Tu P, Bian H X. The influence of static pressure on dielectric propertyand intracellular moisture of apple[J]. Science and Technology of Food Industry,2017,38(20):30−34.
    [7]
    Ihara S, Islam M Z, Kitamura Y, et al. Nondestructive evaluation of wet aged beef by novel electrical indexes: A preliminary study[J]. Foods,2019,8(8):313. doi: 10.3390/foods8080313
    [8]
    Afonso J, Guedes C, Santos V, et al. Utilization of bioelectrical impedance to predict intramuscular fat and physicochemical traits of the beef longissimus thoracis et lumborum muscle[J]. Foods,2020,9(6):836. doi: 10.3390/foods9060836
    [9]
    Huh S, Kim H, Lee S, et al. Utilization of electrical impedance spectroscopy and image classification for non-invasive early assessment of meat freshness[J]. Sensors,2021,21(3):1001. doi: 10.3390/s21031001
    [10]
    张峰, 张琛, 李湘眷. 基于电阻抗谱的猪、牛肉新鲜度快速无损评价[J]. 肉类研究,2019,33(10):51−56. [Zhang F, Zhang C, Li X J. Fast nondestructive evaluation of meat freshness based on electrical impedance spectrum[J]. Meat Research,2019,33(10):51−56.
    [11]
    王政纲. 基于生物电阻抗的冰鲜羊肉宰后僵直和成熟进程评价研究[D].呼和浩特: 内蒙古农业大学, 2019.

    Wang Z G. Evaluation of rigor and aging process of mutton stored at ice-temperature based on bio-impedance[D]. Hohhot: Inner Mongolia Agricultural University, 2019.
    [12]
    张洪伟. 基于生物电阻抗谱的注水肉检测方法研究[D].长沙: 湖南大学, 2017.

    Zhang H W. The research on the method of water injection meat testing based on bioelectric impedance spectrum[D]. Changsha: Hunan University, 2017.
    [13]
    陈天浩, 韩敏义, 王鹏, 等. 基于阻抗技术的腌肉盐分含量快速无损检测[J]. 食品与机械,2015,31(6):75−78. [Chen T H, Han M Y, Wang P, et al. Determination on salt content of dry-cured meat by rapid and non-invasion impedance technology[J]. Food and Machinery,2015,31(6):75−78.
    [14]
    Wang L, Xue L, Guo R, et al. Combining impedance biosensor with immunomagnetic separation for rapid screening of Salmonella in poultry supply chains[J]. Poultry Science,2020,99(3):1606−1614. doi: 10.1016/j.psj.2019.12.007
    [15]
    李伟明, 王鹏, 陈天浩, 等. 基于阻抗特性和神经网络的鸡胸肉冻融次数鉴别方法[J]. 农业工程学报,2014,30(7):250−257. [Li W M, Wang P, Chen T H, et al. Classification of chicken breasts with different freezing-thawing cycles by impedance properties and artificial neural networks[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(7):250−257. doi: 10.3969/j.issn.1002-6819.2014.07.030
    [16]
    Chen T, Zhu Y, Wang P, et al. The use of the impedance measurements to distinguish between fresh and frozen-thawed chicken breast muscle[J]. Meat Science,2016,116:151−157. doi: 10.1016/j.meatsci.2016.02.003
    [17]
    魏然, 王鹏, 陈天浩, 等. 不同冻藏温度对鸡胸肉电阻抗特性的影响[J]. 食品工业科技,2016,37(20):312−316. [Wei R, Wang P, Chen T H, et al. Effect of different frozen storage temperature on electrical impedance of chicken breast meat[J]. Science and Technology of Food Industry,2016,37(20):312−316.
    [18]
    Morey A, Smith A E, Garner L J, et al. Application of bioelectrical impedance analysis to detect broiler breast filets affected with woody breast myopathy[J]. Frontiers in Physiology,2020,11(11):808.
    [19]
    黄玉萍, 陈桂云, 夏建春, 等. 注水肉无损检测技术现状与发展趋势分析[J]. 农业机械学报,2015,46(1):207−215. [Huang Y P, Chen G Y, Xia J C, et al. Status and trends of nondestructive detection technology for water-injected meat[J]. Transactions of the Chinese Society of Agricultural Machinery,2015,46(1):207−215. doi: 10.6041/j.issn.1000-1298.2015.01.030
    [20]
    Tomita K, Koganezawa I, Nakagawa M, et al. A new preoperative risk score for predicting postoperative complications in elderly patients undergoing hepatectomy[J]. World Journal of Surgery,2021,45:1868−1876.
    [21]
    Vij N. Prognosis-based early intervention strategies to resolve exacerbation and progressive lung function decline in cystic fibrosis[J]. Journal of Personalized Medicine,2021,11(2):96. doi: 10.3390/jpm11020096
    [22]
    Frey S M, Vogt B, Simonetti G D, et al. Differential assessment of fluid compartments by bioimpedance in pediatric patients with kidney diseases[J]. Pediatric Nephrology,2021:1−8.
    [23]
    柏雪. 不同贮藏期猪肉电阻抗频谱特性及其与猪肉品质特性关系研究[D].长春: 吉林大学, 2018.

    Bai X. Study on the characteristics of electrical impedance spectrum and the relationship with quality of pork in different storage[D]. Changchun: Jilin University, 2018.
    [24]
    孙百爽. 基于电阻法的肉类水分快速检测装置及其检测方法的研发[D].长春: 吉林大学, 2020.

    Sun B S. Research and development of rapid detection device and detection method for moisture content of meat based on resistance method[D]. Changchun: Jilin University, 2020.
    [25]
    梁黎明. 基于高光谱成像和阻抗谱技术的三文鱼品质检测研究[D].镇江: 江苏大学, 2020.

    Liang L M. Study on quality detection of salmon based on hyperspectral imaging and impedance spectroscopy techniques[D]. Zhenjiang: Jiangsu University, 2020.
    [26]
    王联欢. 基于生物电阻抗谱测量的注水肉识别方法研究[D].西安: 西安理工大学, 2016.

    Wang L H. Water-injected meat identification method research based on bio-impedance spectroscopy measurement[D]. Xi'an: Xi'an University of Technology, 2016.
    [27]
    赵旭彤. 牛肉腌制中氯化钠扩散过程及其模拟研究[D].长春: 吉林大学, 2020.

    Zhao X T. Study on diffusion process and simulation of NaCl in beef brining[D]. Changchun: Jilin University, 2020.
    [28]
    谢翌冬, 肖卫民, 康大成, 等. 一种基于生物阻抗的冷鲜猪肉新鲜度检测方法研究[J]. 南京农业大学学报,2016,39(5):845−851. [Xie Y D, Xiao W M, Kang D C, et al. A method for detection of chilled pork freshness using bioimpedance[J]. Journal of Nanjing Agricultural University,2016,39(5):845−851. doi: 10.7685/jnau.201601017
    [29]
    王延东. 复方黄芪颗粒对肉鸡肉品质的影响[J]. 饲料研究,2021(4):31−34. [Wang Y D. Effect of compound Astragalus granule on the meat quality of broilers[J]. Feed Research,2021(4):31−34.
    [30]
    Hughes J M, Oiseth S K, Purslow P P, et al. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness[J]. Meat Science,2014,98(3):520−532. doi: 10.1016/j.meatsci.2014.05.022
    [31]
    宋耀艳. 电子舌电化学特征参数的稳定性研究与应用[D].杭州: 浙江工商大学, 2017.

    Song Y Y. The stability research and application of electrochemical eigenvable of electronic tongue[D]. Hangzhou: Zhejiang Gongshang University, 2017.
    [32]
    王霞, 徐幸莲, 王鹏. 基于电子舌技术对鸡肉肉质区分的研究[J]. 食品科学,2012,33(21):100−103. [Wang X, Xu X L, Wang P. Discrimination of chicken meat quality by electronic tongue[J]. Food Science,2012,33(21):100−103.
    [33]
    王稚晖. 相位角评价胆道闭锁肝移植患儿营养状态及其临床意义的探讨[D].天津: 天津医科大学, 2019.

    Wang Z H. The value of phase angle from BIA in evaluating nutritional status of children with biliary atresia[D]. Tianjin: Tianjin Medical University, 2019.
    [34]
    谢翌冬. 生物阻抗法检测猪肉新鲜度及其模型预测研究[D].南京: 南京农业大学, 2016.

    Xie Y D. Biological impedance method for detecting the pork freshness and model prediction[D]. Nanjing: Nanjing Agricultural University, 2016.
    [35]
    孙健. 基于阻抗谱的鱼新鲜度检测关键技术研究[D].镇江: 江苏大学, 2019.

    Sun J. Research on key technologies of fish freshness detection based on impedance spectroscopy[D]. Zhenjiang: Jiangsu University, 2019.
    [36]
    李伟明. 冻藏时间和冻融次数对鸡胸肉品质及阻抗特性的影响[D].南京: 南京农业大学, 2014.

    Li W M. Effects of frozen time and freezing thawing times on electric impedance and quality properties of chicken breasts[D]. Nanjing: Nanjing Agricultural University, 2014.
    [37]
    付钦鹏, 种银保, 赵安, 等. 适于动物肌肉组织局部电阻抗测量的无创电极间距研究[J]. 中国医疗设备,2017,32(8):38−41. [Fu Q P, Zhong Y B, Zhao A, et al. Suitable noninvasive electrode distance for local electrical impedance measurement of animal muscle tissue[J]. China Medical Equipment,2017,32(8):38−41. doi: 10.3969/j.issn.1674-1633.2017.08.010
    [38]
    吕新强. 生物阻抗谱测量与分析方法研究[D].天津: 天津科技大学, 2016.

    Lu X Q. Research on bio-impedance spectroscopy measurement and analysis method[D]. Tianjin: Tianjin University of Science and Technology, 2016.
  • Cited by

    Periodical cited type(14)

    1. 刘非凡,温纪平,展小彬,石松业,李柯新,唐浩洁. 冷等离子体处理在食品中的应用研究进展. 食品研究与开发. 2024(12): 181-188 .
    2. 闵照永. 等离子体活化水及微波协同处理对鲜湿面片特性的影响. 食品科技. 2024(06): 180-186 .
    3. 高婷,尹凯静,邵栋梁,赵丹丹,戴文娜. 低温等离子体技术杀灭食源性致病菌的研究进展. 农产品加工. 2024(14): 100-103 .
    4. 方镇洲,杨体园,赵玲艳,邓洁红. 低温等离子体处理对华容大叶芥菜贮藏品质的影响. 食品安全质量检测学报. 2024(20): 257-262 .
    5. 张腾,江昊. 超声渗透等离子活化水对香蕉切片鲜切品质的影响. 包装工程. 2023(05): 65-74 .
    6. 萧文宇,吴迅,黄显斌,李玲,何志平,郭俭. 低温等离子体活化水对蓝莓表面微生物抑制作用及其贮藏品质的影响. 食品工业科技. 2023(08): 359-365 . 本站查看
    7. 颜心怡,李锦晶,李赤翎,吴金鸿,俞健,王发祥,刘永乐,李向红. 冷等离子体技术对食品组分的影响及其作用机制. 食品工业科技. 2023(12): 445-454 . 本站查看
    8. 李芮,宋雅琪,周丹丹,屠康. 等离子体活化水对鲜切莲藕杀菌及保鲜的影响. 食品与生物技术学报. 2023(10): 30-40 .
    9. 田方,徐咏菁,孙志栋,周琦,王志远,华镇南,蔡路昀. 低温等离子体处理对鲜切猕猴桃片微观结构及理化特性的影响. 食品与发酵工业. 2023(21): 167-174 .
    10. 赵莹,严龙飞,严文静,章建浩. 低温等离子体活化水与介质阻挡放电联合处理对草莓冷杀菌效果及品质的影响. 食品科学. 2022(17): 105-116 .
    11. 韩扬,朱成志,李沁雨,李立,马新新,赵志军,包怡红. ε-聚赖氨酸复合保鲜剂对鸡毛菜品质及微生物的影响. 食品与发酵工业. 2022(18): 205-212 .
    12. 白亚龙,廖小艳,崔妍. 消除鲜食生菜中细菌污染的研究进展. 食品科学. 2022(19): 367-374 .
    13. 相启森,张嵘,杜桂红,王利敏,蒋爱民. 等离子体活化水对沙门氏菌的灭活作用及机制研究. 食品工业科技. 2021(08): 138-143 . 本站查看
    14. 翟娅菲,田佳丽,相启森,禹晓,申瑞玲,王章存. 非热加工技术在果蔬保鲜中的应用. 食品工业. 2021(05): 327-332 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (174) PDF downloads (14) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return