GUAN Huanan, WANG Dandan, SUN Bingyu, et al. Application Progress of Fluorescent Nanomaterials as Mimic Enzymes in Biochemical Analysis[J]. Science and Technology of Food Industry, 2022, 43(12): 389−397. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030338.
Citation: GUAN Huanan, WANG Dandan, SUN Bingyu, et al. Application Progress of Fluorescent Nanomaterials as Mimic Enzymes in Biochemical Analysis[J]. Science and Technology of Food Industry, 2022, 43(12): 389−397. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030338.

Application Progress of Fluorescent Nanomaterials as Mimic Enzymes in Biochemical Analysis

More Information
  • Received Date: March 29, 2021
  • Available Online: April 10, 2022
  • Fluorescent nanomaterials mainly include fluorescent carbon nanomaterials, fluorescent metal nanomaterials, multifunctional composite nanomaterials and metal frames. The materials not only have unique fluorescence intensity and high photostability, but also have unique quantum effect, small size and other properties of nanomaterials. In recent years, due to its high stability, low cost, easy preparation and other characteristics, it has gradually become the preferred material for mimic enzyme, which has brought new development opportunities for food, medical and biochemical fields. In this paper, the application of fluorescent nanomaterials as mimetic enzymes in biochemical analysis in recent years and the latest research progress are briefly summarized, and the future challenges and prospects of fluorescent nanomaterials as mimetic enzymes are prospected.
  • [1]
    翁文婷, 王思玉, 庄君阳. 聚多巴胺原位还原银纳米增强碳点荧光自组装纳米复合膜用于检测葛根素研究[J]. 光谱学与光谱分析,2021,41(1):168−176. [WENG W T, WANG S Y, ZHUANG J Y. Self-Assembled nanocomposite film of AgN in-situ grown on polydopamine with enhanced fluorescence of CDs for detection of puerarin[J]. Spectroscopy and Spectral Analysis,2021,41(1):168−176.

    WENG W T, WANG S Y, ZHUANG J Y. Self-Assembled nanocomposite film of AgN in-Situ grown on polydopamine with enhanced fluorescence of CDs for detection of puerarin[J]. Spectroscopy and Spectral Analysis, 2021, 41(1): 168-176.
    [2]
    钟青梅, 黄欣虹, 覃庆敏, 等. 以碳量子点为过氧化物模拟酶的葡萄糖测定方法[J]. 分析化学,2018,46(7):1062−1068. [ZHONG Q M, HUANG X H, QIN Q M, et al. Determination of glucose based on carbon quantum dots as peroxidase mimetic enzyme[J]. Chinese Journal of Analytical Chemistry,2018,46(7):1062−1068. doi: 10.11895/j.issn.0253-3820.171396

    ZHONG Q M, HUANG X H, QIN Q M, et al. Determination of glucose based on carbon quantum dots as peroxidase mimetic enzyme[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7): 1062-1068. doi: 10.11895/j.issn.0253-3820.171396
    [3]
    YAO X, LIU T, XIE Y, et al. In situ-forming magnetic Fe3O4nanoroses on defect-controllable mesoporous graphene oxide for enzyme-mimic sensing[J]. Industrial & Engineering Chemistry Research,2020,59(40):17934−17943.
    [4]
    SONG H, MA C, WANG L, et al. Platinum nanoparticle-deposited multi-walled carbon nanotubes as a NADH oxidase mimic: characterization and applications[J]. Nanoscale,2020,12(37):19284−19292. doi: 10.1039/D0NR04060F
    [5]
    FARNOOSH A, MAHSA G S, BEHNAM R, et al. Nanozymes with intrinsic peroxidase-like activities[J]. Journal of Molecular Liquids,2019,278:130−144. doi: 10.1016/j.molliq.2018.12.011
    [6]
    XIN Q, JIA X, NAWAZ A, et al. Mimicking peroxidase active site microenvironment by functionalized graphene quantum dots[J]. Nano Research,2020,13(5):1427−1433. doi: 10.1007/s12274-020-2678-z
    [7]
    SURENDRAN P, LAKSHMANAN A, PRIYA S S, et al. Fluorescent carbon quantum dots from Ananas comosus waste peels: A promising material for NLO behaviour, antibacterial, and antioxidant activities[J]. Inorganic Chemistry Communications,2021,124:108397. doi: 10.1016/j.inoche.2020.108397
    [8]
    CHAUDHARY S, KUMARI M, CHAUHAN P, et al. Upcycling of plastic waste into fluorescent carbon dots: An environmentally viable transformation to biocompatible C-dots with potential prospective in analytical applications[J]. Waste Management,2021,120:675−686. doi: 10.1016/j.wasman.2020.10.038
    [9]
    HUANG G, LIU Y, CHEN H, et al. A novel grafting-template method to prepare three-dimensional hierarchical porous carbon with high surface area and electrical conductivity for superior-performance supercapacitors[J]. Journal of Power Sources,2021,482:228922. doi: 10.1016/j.jpowsour.2020.228922
    [10]
    PAN M, XIE X, LIU K, et al. Fluorescent carbon quantum dots—synthesis, functionalization and sensing application in food analysis[J]. Nanomaterials,2020,10(5):930. doi: 10.3390/nano10050930
    [11]
    YUE X Y, ZHOU Z J, WU Y M, et al. Application progress of fluorescent carbon quantum dots in food analysis[J]. Chinese Journal of Analytical Chemistry,2020,48(10):1288−1296. doi: 10.1016/S1872-2040(20)60049-4
    [12]
    SOBIECH M, LULIŃSKI P, WIECZOREK P P, et al. Quantum and carbon dots conjugated molecularly imprinted polymers as advanced nanomaterials for selective recognition of analytes in environmental, food and biomedical applications[J]. TrAC Trends in Analytical Chemistry,2021,142:116306. doi: 10.1016/j.trac.2021.116306
    [13]
    CILINGIR E K, SEVEN E S, ZHOU Y, et al. Metformin derived carbon dots: Highly biocompatible fluorescent nanomaterials as mitochondrial targeting and blood-brain barrier penetrating biomarkers[J]. Journal of Colloid and Interface Science,2021,592:485−497. doi: 10.1016/j.jcis.2021.02.058
    [14]
    GAVIRIA-ARROYAVE M I, CANO J B, PEÑUELA G A. Nanomaterial-based fluorescent biosensors for monitoring environmental pollutants: A critical review[J]. Talanta Open,2020,2:100006. doi: 10.1016/j.talo.2020.100006
    [15]
    李姚, 王健. 藏红花素抑制过氧化氢诱导的视网膜色素上皮细胞凋亡[J]. 中国中医眼科杂志,2019,29(5):347−350. [LI Y, WANG J. Crocin inhibits the retinal pigment epithelial cell apoptosis induced by H2O2[J]. China Journal of Chinese Ophthalmology,2019,29(5):347−350.

    LI Y, WANG J. Crocin inhibits the retinal pigment epithelial cell apoptosis induced by H2O2 [J]. China Journal of Chinese Ophthalmology, 2019, 29(5): 347-350.
    [16]
    REN H, LIU X, YAN L, et al. Ocean green tide derived hierarchical porous carbon with bi-enzyme mimic activities and their application for sensitive colorimetric and fluorescent biosensing[J]. Sensors and Actuators B Chemical,2020,312:127979. doi: 10.1016/j.snb.2020.127979
    [17]
    SIDDIQUI A S, HAYAT A, NAWAZ M H, et al. Effect of sulfur doping on graphene oxide towards amplified fluorescence quenching based ultrasensitive detection of hydrogen peroxide[J]. Applied Surface Science,2020,509:144695. doi: 10.1016/j.apsusc.2019.144695
    [18]
    LI L H, DUTKIEWICZ E P, HUANG Y C, et al. Analytical methods for cholesterol quantification[J]. Journal of Food and Drug Analysis,2019,27(2):375−386. doi: 10.1016/j.jfda.2018.09.001
    [19]
    PRIYADARSHINI E, RAWAT K. Au@carbon dot nanoconjugates as a dual mode enzyme-free sensing platform for cholesterol[J]. Journal of Materials Chemistry B,2017,5(27):5425−5432. doi: 10.1039/C7TB01345K
    [20]
    HASSANZADEH J, KHATAEE A. Ultrasensitive chemiluminescent biosensor for the detection of cholesterol based on synergetic peroxidase-like activity of MoS2 and graphene quantum dots[J]. Talanta,2017,178:992−1000.
    [21]
    ARYAL K P, EKANAYAKA T K, GILBERT S, et al. Fluorescent detection of cholesterol using p-Sulfonatocalix [4] arene functionalized carbon nanotubes and thermally reduced graphite oxide composites[J]. Chemical Physics Letters,2020,738:136856. doi: 10.1016/j.cplett.2019.136856
    [22]
    HU X, LIU X, ZHANG X, et al. One-pot synthesis of the CuNCs/ZIF-8 nanocomposites for sensitively detecting H2O2 and screening of oxidase activity[J]. Biosensors & Bioelectronics,2018,105:65−70.
    [23]
    BENAVIDES J, QUIJADA-GARRIDO I, GARCÍA O. The synthesis of switch-off fluorescent water-stable copper nanocluster Hg2+ sensors via a simple one-pot approach by anin situ metal reduction strategy in the presence of a thiolated polymer ligand template[J]. Nanoscale,2020,12(2):944−955. doi: 10.1039/C9NR08439H
    [24]
    JAIN V, BHAGAT S, SINGH S. Bovine serum albumin decorated gold nanoclusters: A fluorescence-based nanoprobe for detection of intracellular hydrogen peroxide[J]. Sensors and Actuators B:Chemical,2021,327:128886. doi: 10.1016/j.snb.2020.128886
    [25]
    FENG X, YANG J, WU S, et al. Fluorometric determination of hydrogen peroxide using Fe3O4 magnetic nanoparticles as a mimetic enzyme[J]. Digest Journal of Nanomaterials and Biostructures,2020,15(3):931−942.
    [26]
    NING K, XIANG G, WANG C, et al. ‘Turn-on’fluorescence sensing of hydrogen peroxide in marine food samples using a carbon dots–MnO2 probe[J]. Luminescence,2020,35(6):897−902. doi: 10.1002/bio.3799
    [27]
    SU D, LI H, YAN X, et al. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides[J]. TrAC Trends in Analytical Chemistry,2020,134:116126.
    [28]
    HABADI M I, ALRASHIDI M M, MUTAKI I F, et al. Diagnosis of dysglycemia in diabetic patients in primary health care[J]. Journal of Pharmaceutical Research International,2021:14−19.
    [29]
    LU Q, HUANG T, ZHOU J, et al. Limitation-induced fluorescence enhancement of carbon nanoparticles and their application for glucose detection[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2021,244:118893. doi: 10.1016/j.saa.2020.118893
    [30]
    MERCAN Ö B, KILIÇ V, ŞEN M. Machine learning-based colorimetric determination of glucose in artificial saliva with different reagents using a smartphone coupled μPAD[J]. Sensors and Actuators B:Chemical,2021,329:129037. doi: 10.1016/j.snb.2020.129037
    [31]
    ALLE M, PARK S C, BANDI R, et al. Rapid in-situ growth of gold nanoparticles on cationic cellulose nanofibrils: Recyclable nanozyme for the colorimetric glucose detection[J]. Carbohydrate Polymers,2021,253:117239. doi: 10.1016/j.carbpol.2020.117239
    [32]
    GAO J, HE S, NAG A. Electrochemical detection of glucose molecules using laser-induced graphene sensors: A review[J]. Sensors,2021,21(8):2818. doi: 10.3390/s21082818
    [33]
    NIE F, GA L, AI J, et al. TrimetallicPdCuAunanoparticles for temperature sensing and fluorescence detection of H2O2 and glucose[J]. Frontiers in Chemistry,2020,8:244. doi: 10.3389/fchem.2020.00244
    [34]
    DU P, NIU Q, CHEN J, et al. “Switch-On” fluorescence detection of glucose with high specificity and sensitivity based on silver nanoparticles supported on porphyrin metal–organic frameworks[J]. Analytical chemistry,2020,92(11):7980−7986. doi: 10.1021/acs.analchem.0c01651
    [35]
    LIU Y, DONG P, JIANG Q, et al. Assembly-enhanced fluorescence from metal nanoclusters and quantum dots for highly sensitive biosensing[J]. Sensors and Actuators B:Chemical,2019,279:334−341. doi: 10.1016/j.snb.2018.10.016
    [36]
    NI P, CHEN C, JIANG Y, et al. Gold nanoclusters-based dual-channel assay for colorimetric and turn-on fluorescent sensing of alkaline phosphatase[J]. Sensors and Actuators B Chemical,2019,301:127080. doi: 10.1016/j.snb.2019.127080
    [37]
    GUAN H, SONG Y, HAN B, et al. Colorimetric detection of cholesterol based on peroxidase mimetic activity of GoldMag nanocomposites[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,241:118675. doi: 10.1016/j.saa.2020.118675
    [38]
    PRATSINIS A, KELESIDIS G A, ZUERCHER S, et al. Enzyme-mimetic antioxidant luminescent nanoparticles for highly sensitive hydrogen peroxide biosensing[J]. Acs Nano,2017,11(12):12210−12218. doi: 10.1021/acsnano.7b05518
    [39]
    MATHIVANAN D, TAMMINA S K, WANG X, et al. Dual emission carbon dots as enzyme mimics and fluorescent probes for the determination of o-phenylenediamine and hydrogen peroxide[J]. Microchimica Acta,2020,187(5):1−9.
    [40]
    NGO Y L T, NGUYEN P L, JANA J, et al. Simple paper-based colorimetric and fluorescent glucose sensor using N-doped carbon dots and metal oxide hybrid structures[J]. Analytica Chimica Acta,2021,1147:187−198. doi: 10.1016/j.aca.2020.11.023
    [41]
    HSIEH M W, CHEN H Y, TSAI C C. Screening and evaluation of purine-nucleoside-degrading lactic acid bacteria isolated from winemaking byproductsin vitro and their uric acid-lowering effects in vivo[J]. Fermentation,2021,7(2):74. doi: 10.3390/fermentation7020074
    [42]
    MAZZARA F, PATELLA B, AIELLO G, et al. Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors[J]. Electrochimica Acta,2021,388:138652. doi: 10.1016/j.electacta.2021.138652
    [43]
    HAN L J, KONG Y J, HOU G Z, et al. A europium-based MOF fluorescent probe for efficiently detecting malachite green and uric acid[J]. Inorganic Chemistry,2020,59(10):7181−7187. doi: 10.1021/acs.inorgchem.0c00620
    [44]
    ÖZçELIK S, ÖZTEKIN N, KIYKIM E, et al. Capillary electrophoresis with capacitively coupled contactless conductivity detection for the determination of urinary ethylmalonic acid for the diagnosis of ethylmalonic aciduria[J]. Journal of Separation Science,2020,43(7):1365−1371. doi: 10.1002/jssc.201901044
    [45]
    VLASSA M, FILIP M, DRAGOMIR C. Simultaneous quantifications of four purine derivatives biomarkers in cow milk by SPE HPLC-DAD[J]. Czech Journal of Food Sciences,2021,39(2):122−130. doi: 10.17221/297/2020-CJFS
    [46]
    SHI R, QIN X, YUAN C L, et al. Colorimetric determination of uric acid with molybdenum disulfide nanosheets as peroxidase mimetic enzyme[J]. Chinese Journal of Analytical Chemistry,2021,49(3):397−406.
    [47]
    XIAO N, LIU S G, MO S, et al. B, N-carbon dots-based ratiometric fluorescent and colorimetric dual-readout sensor for H2O2 and H2O2-involved metabolites detection using ZnFe2O4 magnetic microspheres as peroxidase mimics[J]. Sensors and Actuators,2018,273:1735−1743. doi: 10.1016/j.snb.2018.07.097
    [48]
    ZHANG S, LIN F, YUAN Q, et al. Robust magnetic laccase-mimicking nanozyme for oxidizing o-phenylenediamine and removing phenolic pollutants[J]. Journal of Environmental Sciences,2020,88:103−111. doi: 10.1016/j.jes.2019.07.008
    [49]
    PU H, SUN Q, TANG P, et al. Characterization and antioxidant activity of the complexes of tertiary butylhydroquinone with β-cyclodextrin and its derivatives[J]. Food Chemistry,2018,260:183−192. doi: 10.1016/j.foodchem.2018.04.008
    [50]
    WANG Y, YUE Q, TAO L, et al. Fluorometric determination of hydroquinone by using blue emitting N/S/P-codoped carbon dots[J]. Microchimica Acta,2018,185(12):1−9.
    [51]
    BULEDI J A, AMEEN S, KHAND N H, et al. CuO nanostructures based electrochemical sensor for simultaneous determination of hydroquinone and ascorbic acid[J]. Electroanalysis,2020,32(7):1600−1607. doi: 10.1002/elan.202000083
    [52]
    TSUTAHARA R, NISHIHARA M, OSUMI Y. Simultaneous determination of arbutin and hydroquinone in dried bearberry leaf extracts by HPLC[J]. BUNSEKI KAGAKU,2020,69(7-8):357−362. doi: 10.2116/bunsekikagaku.69.357
    [53]
    WANG X, CHENG Z, ZHOU Y, et al. A double carbon dot system composed of N, Cl-doped carbon dots and N, Cu-doped carbon dots as peroxidase mimics and as fluorescent probes for the determination of hydroquinone by fluorescence[J]. Microchimica Acta,2020,187(6):1−8.
    [54]
    LI C, LIU Q, WANG X, et al. An ultrasensitive K+ fluorescence/absorption di-mode assay based on highly co-catalysiscarbon dot nanozyme and DNAzyme[J]. Microchemical Journal,2020,159:105508. doi: 10.1016/j.microc.2020.105508
    [55]
    GUO J, WANG Y, ZHAO M. Target-directed functionalized ferrous phosphate-carbon dots fluorescent nanostructures as peroxidase mimetics for cancer cell detection and ROS-mediated therapy[J]. Sensors and Actuators B:Chemical,2019,297:126739. doi: 10.1016/j.snb.2019.126739
    [56]
    AKHTAR M H, HUSSAIN K K, GURUDATT N G, et al. Detection of Ca2+-induced acetylcholine released from leukemic T-cells using an amperometric microfluidic sensor[J]. Biosensors and Bioelectronics,2017,98:364−370. doi: 10.1016/j.bios.2017.07.003
    [57]
    MATHEW M S, BAKSI A, PRADEEP T, et al. Choline-induced selective fluorescence quenching of acetylcholinesterase conjugated Au@ BSA clusters[J]. Biosensors and Bioelectronics,2016,81:68−74. doi: 10.1016/j.bios.2016.02.048
    [58]
    GUO J, WU S, WANG Y, et al. A label-free fluorescence biosensor based on a bifunctional MIL-101(Fe) nanozyme for sensitive detection of choline and acetylcholine at nanomolar level[J]. Sensors and Actuators B Chemical,2020,312:128021. doi: 10.1016/j.snb.2020.128021
    [59]
    VALEKAR A H, BATULE B S, KIM M I, et al. Novel amine-functionalized iron trimesates with enhanced peroxidase-like activity and their applications for the fluorescent assay of choline and acetylcholine[J]. Biosensors & Bioelectronics,2017:161−168.
  • Cited by

    Periodical cited type(2)

    1. 燕欣悦,胡风庆,宁崇,李慧宇,李芳,郭崇婷. 电子束辐照技术对食品品质的影响及在食品中的应用研究进展. 食品与机械. 2025(02): 216-225 .
    2. 侯港华,丁哲. 新型食品加工技术对食品质量的影响分析. 中外食品工业. 2024(20): 7-9 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (208) PDF downloads (20) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return