LI Xiaoyan, CAO Boqiang, YANG Hongpeng, et al. Preparation and Properties of Sanxan/Sodium Alginate Edible Composite Film[J]. Science and Technology of Food Industry, 2021, 42(19): 255−260. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030219.
Citation: LI Xiaoyan, CAO Boqiang, YANG Hongpeng, et al. Preparation and Properties of Sanxan/Sodium Alginate Edible Composite Film[J]. Science and Technology of Food Industry, 2021, 42(19): 255−260. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030219.

Preparation and Properties of Sanxan/Sodium Alginate Edible Composite Film

More Information
  • Received Date: March 16, 2021
  • Available Online: August 11, 2021
  • The aim of this study was to investigate the synergistic effect of Sanxan (SAN) and Sodium alginate (SA) and the properties of composite film. SAN and SA were mixed at different mass ratios, and glycerin was added as plasticizer to prepare composite films. The tensile strength of films, elongation at break, light transmittance, solubility and water vapor transmittance were measured. Differential scanning calorimetry analysis of composite films was carried out. The microstructure of films was characterized by fourier transform infrared spectrum and scanning electron microscope. The results showed that the tensile strength of the SAN/SA film with the mass ratio of 5:5 was the highest, and the difference between the film with the ratio of 4:6 was not significant (P>0.05), but was significantly higher than that of other films (P<0.05). The flexibility of film with SAN/SA mass ratio of 6:4 was significantly increased (P<0.05), the water vapor transmittance and solubility of this film were the lowest. Differential scanning calorimetry analysis showed that the heat resistance of the composite film was improved. According to the results of fourier transform infrared spectrum, hydrogen bond interaction existed between SAN and SA molecules, indicating good compatibility and synergistic effect between them. The microstructure showed that the network structure of the composite film was arranged more orderly and the pores of the film surface were smaller. The results showed that SAN had a good synergistic effect with sodium alginate, and the properties of SAN/SA composite film were significantly improved. As a newly approved natural polymer which can be used in the food field, the application prospect of SAN is broad.
  • [1]
    Mohamed S A, El-sakhawy M, El-sakhawy M A. Polysaccharides, protein and lipid-based natural edible films in food packaging: A review[J]. Carbohydrate Polymers, 2020, 238: 116178.
    [2]
    李帅, 钟耕辉, 刘玉梅. 多糖类可食性膜的研究进展[J]. 食品科学,2018,39(3):309−316. [Li S, Zhong G H, Liu Y M. Progress in edible films prepared with polysaccharides[J]. Food Science,2018,39(3):309−316. doi: 10.7506/spkx1002-6630-201803046
    [3]
    董宇豪, 陈浩, 吴志宇, 等. 海藻酸钠-鱼明胶复合可食膜的制备及特性研究[J]. 中国食品学报,2020,20(1):134−140. [Dong Y H, Chen H, Wu Z Y, et al. Research on the preparation and properties of the sodium alginate-fish gelatin composite edible film[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(1):134−140.
    [4]
    林伟鸿, 夏明. 可食用膜的分类和应用研究进展[J]. 农产品加工,2016,23:62−65. [Lin W H, Xia M. Progress on the classification and application of edible film[J]. Farm Products Processing,2016,23:62−65.
    [5]
    卢星池, 肖茜, 邓放明. 多糖类可食用膜研究进展[J]. 食品与机械,2014,30(4):261−265. [Lu X C, Xiao Q, Deng F M. Advance on edible film with polysaccharide[J]. Food & Machinery,2014,30(4):261−265.
    [6]
    Nešić A, Cabrera-barjas G, Dimitrijević-branković S, et al. Prospect of polysaccharide-based materials as advanced food packaging[J]. Molecules, 2019, 25(1): 135.
    [7]
    Senturk P T, Müller K, Schmid M. Alginate-based edible films and coatings for food packaging applications[J]. Foods,2018,7(10):170. doi: 10.3390/foods7100170
    [8]
    Cazón P, Velazquez G, Ramírez JA, et al. Polysaccharide-based films and coatings for food packaging: A review[J]. Food Hydrocolloids,2017,68:136−148. doi: 10.1016/j.foodhyd.2016.09.009
    [9]
    Huang H D, Wang W, Ma T, et al. Sphingomonas sanxanigenens sp. nov., isolated from soil[J]. International Journal of Systematic and Evolutionary Microbiology,2009,59(4):719−723. doi: 10.1099/ijs.0.000257-0
    [10]
    Huang H D, Wu M M, Yang H P, et al. Structural and physical properties of sanxan polysaccharide from Sphingomonas sanxanigenens[J]. Carbohydrate Polymers,2016,144:410−418. doi: 10.1016/j.carbpol.2016.02.079
    [11]
    Wu M M, Shi Z, Huang H D, et al. Network structure and functional properties of transparent hydrogel sanxan produced by Sphingomonas sanxanigenens NX02[J]. Carbohydrate Polymers,2017,176:65−74. doi: 10.1016/j.carbpol.2017.08.057
    [12]
    黄海东, 李晓雁, 段娜, 等. 鞘氨醇胶Ss胶凝条件及质构特性的研究[J]. 食品研究与开发,2013,34(4):117−120. [Huang H D, Li X Y, Duan N, et al. Gelling conditions and textural properties of Sphingan Ss[J]. Food Research and Development,2013,34(4):117−120. doi: 10.3969/j.issn.1005-6521.2013.04.034
    [13]
    国家卫生健康委员会公告2020年第4号[J]. 中华人民共和国国家卫生健康委员会公报, 2020(5): 3−19.

    Announcement of national health commission No. 4, 2020[J]. Bulletin of the National Health Commission of the People's Republic of China, 2020(5): 3−19.
    [14]
    Zhang Y, Han JH. Plasticization of pea starch films with monosaccharides and polyols[J]. Food Engineering and Physical Properties,2006,71(6):253−261.
    [15]
    北京市塑料研究所. 塑料薄膜和片材透水蒸气性试验方法: GB/T1037-1988[S]. 北京: 中国标准出版社, 1988.

    Beijing Institute of Plastics. Test method for water vapor permeability of plastic films and sheets: GB/T1037-1988[S]. Beijing: China Standard Press, 1988.
    [16]
    向飞, 吴考, 肖满, 等. 魔芋葡甘聚糖基可食膜的成膜机理研究进展[J]. 食品工业科技,2020,41(5):340−347. [Xiang F, Wu K, Xiao M, et al. Progress in the mechanism of formation of konjac glucomannan-based edible film[J]. Science and Technology of Food Industry,2020,41(5):340−347.
    [17]
    Lazaridou A, Biliaderis CG, Kontogiorgos V. Molecular weight effects on solution rheology of pullulan and mechanical properties of its films[J]. Carbohydrate Polymers,2003,52(2):151−166. doi: 10.1016/S0144-8617(02)00302-8
    [18]
    李昭勇, 陈春梅, 赵芸, 等. 海藻酸钠-结冷胶复合膜的性能与应用研究[J]. 食品研究与开发,2021,42(1):21−25. [Li Z Y, Chen C M, Zhao Y, et al. The research of property and application of alginate/gellan blend films[J]. Food Research and Development,2021,42(1):21−25.
    [19]
    王丽媛, 侯梦奇, 李晓, 等. 4种改性方式对明胶膜性能的影响[J]. 食品科学,2015,36(6):40−44. [Wang L Y, Hong M Q, Li X, et al. Effects of four modification methods on properties of gelatin-chitosan edible film[J]. Food Science,2015,36(6):40−44. doi: 10.7506/spkx1002-6630-201506008
    [20]
    李昭勇, 赵芸, 庄晓雯, 等. 响应面法优化海藻酸钠-结冷胶复合膜抗水性能[J]. 中国海洋药物,2020,39(5):45−51. [Li S Y, Zhao Y, Zhuang X W, et al. Response surface methodology optimize water resistance of alginate/gellan blend films[J]. Chinese Journal of Marine Drugs,2020,39(5):45−51.
    [21]
    Ferreira A R V, Alves V D, Coelhoso I M. Polysaccharide-based membranes in food packaging applications[J]. Membranes,2016,6(2):22. doi: 10.3390/membranes6020022
    [22]
    余作龙, 饶桂维, 严小平, 等. 豌豆淀粉/ε-聚赖氨酸复合膜的制备及其性能[J]. 食品工业科技,2018,39(13):89−93. [Yu Z L, Rao G W, Yan X P, et al. Preparation and properties of pea starch/ε-poly lysine composite films[J]. Science and Technology of Food Industry,2018,39(13):89−93.
    [23]
    陈曦, 卢立新, 丘晓琳, 等. 内嵌混合乳化剂微球的海藻酸钠食品抗菌包装膜的机械和释放性能研究[J]. 中国食品学报,2019,19(8):166−172. [Chen X, Lu L X, Qiu X L, et al. Studies on mechanical and release properties of sodium alginate bio-based food packaging films embedded with cinnamon essential oil microspheres encapsulated in mixed emulsifiers[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(8):166−172.
    [24]
    谢文, 周莲娇, 徐娟, 等. 生物热化学和热动力学研究进展[J]. 物理化学学报,2020,36(6):19−28. [Xie W, Zhou L J, Xu J, et al. Advances in biothermochemistry and thermokinetics[J]. Acta Physico-Chimica Sinica,2020,36(6):19−28.
    [25]
    Matsingou C, Hatziantoniou S, Georgopoulos A, et al. Labdane-type diterpenes: Thermal effects on phospholipid bilayers, incorporation into liposomes and biological activity[J]. Chemistry and Physics of Lipids,2005,138(1-2):1−11. doi: 10.1016/j.chemphyslip.2005.07.006
    [26]
    Alkan D, Yemenicioğlu A. Potential application of natural phenolic antimicrobials and edible film technology against bacterial plant pathogens[J]. Food Hydrocolloids,2016,55:1−10. doi: 10.1016/j.foodhyd.2015.10.025
    [27]
    陈悦, 陈季旺, 周琦, 等. 壳聚糖-乳清分离蛋白复合膜的制备、形态结构及理化性质[J]. 食品科学,2014,35(9):106−111. [Chen R, Chen J W, Zhou Q, et al. Preparation, morphological structure, and physico-chemical properties of chitosan-whey protein isolate composite film[J]. Food Science,2014,35(9):106−111. doi: 10.7506/spkx1002-6630-201409022
    [28]
    Shahbazi M, Ghadir R, Seyed J A. Characterization of nanocomposite film based on chitosan intercalated in clay platelets by electron beam irradiation[J]. Carbohydrate Polymers,2017,157:226−235. doi: 10.1016/j.carbpol.2016.09.018
    [29]
    李秋莹, 徐瑾秀, 高明君, 等. 普鲁兰/壳聚糖/海藻酸钠双层膜的制备及表征[J]. 包装工程,2020,41(15):96−102. [Li Q Y, Xu J X, Gao M J, et al. Preparation and characterization of pullulan/chitosan/sodium alginate bilayer films[J]. Packaging Engineering,2020,41(15):96−102.
    [30]
    Du Hengjun, Hu Qiuhui, Yang Wenjian, et al. Development, physiochemical characterization and forming mechanism of Flammulina velutipes polysaccharide-based edible films[J]. Carbohydrate Polymers,2016,152:214−221. doi: 10.1016/j.carbpol.2016.07.035
    [31]
    Jin L, Qi H, Gu X, et al. Effect of sodium alginate type on drug release from chitosan-sodium alginate-based in situ film-forming tablets[J]. AAPS PharmSciTech,2020,21(2):55. doi: 10.1208/s12249-019-1549-y
  • Cited by

    Periodical cited type(2)

    1. 肖佳豪,张群,潘兆平,李涛,孙恬,江盛宇,李绮丽,付复华. 低温超微粉碎对茶枝柑果肉粉理化性质和功能特性的影响. 食品科学. 2024(20): 220-231 .
    2. 王鑫,毕海鑫,修伟业,遇世友,韩春然. 发酵蓝靛果果汁的工艺优化及香气成分分析. 食品工业科技. 2023(13): 176-185 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (581) PDF downloads (36) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return