Citation: | WANG Qin, WANG Wenwen, WANG Yuan, et al. Protective Effects of Fermented Wheat Bran Polysaccharides against Oxidative Stress Induced by Diquat of Spleen in Weaned Rats[J]. Science and Technology of Food Industry, 2021, 42(24): 327−333. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030127. |
[1] |
SOHAL R S, ALLEN R G. Oxidative stress as a causal factor in differentiation and aging: A unifying hypothesis[J]. Experimental Gerontology,1990,25(6):499−525. doi: 10.1016/0531-5565(90)90017-V
|
[2] |
KURIEN B T, HENSLEY K, BACHMANN M, et al. Oxidatively modified autoantigens in autoimmune diseases[J]. Free Radical Biology & Medicine,2006,41(4):549−556.
|
[3] |
FUENTE M D L. Effects of antioxidants on immune system ageing[J]. European Journal of Clinical Nutrition,2002,56(3):S5−S8.
|
[4] |
孟庆龙, 金莎, 刘雅婧, 等. 植物多糖药理功效研究进展[J]. 食品工业科技,2020,41(11):335−341. [MENG Q L, JIN S, LIU Y J, et al. Research progress in pharmacological efficacy of plant polysaccharides[J]. Science and Technology of Food Industry,2020,41(11):335−341.
|
[5] |
蔺艳君, 刘丽娅, 钟葵, 等. 不同来源小麦麸皮营养成分及酚类物质含量的比较[J]. 现代食品科技,2014,30(12):194−200. [LIN Y J, LIU L Y, ZHONG K, et al. Comparison of nutritional and phenolic content of wheat bran obtained from different sources[J]. Modern Food Science and Technology,2014,30(12):194−200.
|
[6] |
JUNYI Y, MALDONADO GÓMEZ MARÍA X, HUTKINS ROBERT W, et al. Production and in vitro fermentation of soluble, non-digestible, feruloylatedoligo- and polysaccharides from maize and wheat brans[J]. Journal of Agricultural and Food Chemistry,2014,62(1):159−166. doi: 10.1021/jf404305y
|
[7] |
王园, 史俊祥, 段元霄, 等. 麸皮多糖微生物发酵工艺优化及其抗炎活性[J]. 食品科学,2018,39(14):192−198. [WANG Y, SHI J X, DUAN Y X, et al. Optimization of fermentation conditions for improved production of polysaccharides from wheat bran and anti-inflammatory effects of the extracted polysaccharides[J]. Food Science,2018,39(14):192−198. doi: 10.7506/spkx1002-6630-201814029
|
[8] |
ZHANG H, ZHANG S, WANG J, et al. Wheat bran feruloyl oligosaccharides protect against AAPH-induced oxidative injury via p38MAPK/PI3K-Nrf2/Keap1-MafK pathway[J]. Journal of Functional Foods,2017,29:53−59. doi: 10.1016/j.jff.2016.12.009
|
[9] |
李暄. 发酵麦麸多糖提取、分离纯化及生物活性分析[D]. 呼和浩特: 内蒙古农业大学, 2019.
LI X. Extraction, separation, purification, and biological activity analysis of fermented wheat bran polysaccharide[D]. Hohhot: Inner Mongolia Agricultural University, 2019.
|
[10] |
JIA X J, DING C B, YUAN S, et al. Extraction, purification andcharacterization of polysaccharides form hawk tea[J]. Carbohydrate Polymers,2014,99:319−324. doi: 10.1016/j.carbpol.2013.07.090
|
[11] |
ZHANG Z, WANG X, ZHANG J, et al. Potential antioxidant activities in vitro of polysaccharides extracted from ginger(Zingiber officinale)[J]. Carbohydrate Polymers,2011,86(2):448−452. doi: 10.1016/j.carbpol.2011.04.062
|
[12] |
XU Y Q, CAI F, YU Z Y, et al. Optimisation of pressurised water extraction of polysaccharides from blackcurrant and its antioxidant activity[J]. Food Chemistry,2016,194(194):650−658.
|
[13] |
杜涓, 安晓萍, 刘娜, 等. 分级醇沉发酵麸皮多糖的成分分析与抗氧化活性研究[J]. 食品工业科技,2020,41(5):58−62. [DU J, AN X P, LIU N, et al. Studies on composition analysis and antioxidant activities of bran polysaccharides by fractional alcohol submerged fermentation[J]. Science and Technology of Food Industry,2020,41(5):58−62.
|
[14] |
RAGURAMAN V, ABRAHAM L S, JYOTSNA J, et al. Sulfated polysaccharide from Sargassum tenerrimum attenuates oxidative stress induced reactive oxygen species production in in vitro and in zebrafish model[J]. Carbohydrate Polymers,2019,203(203):441−449.
|
[15] |
雷钊, 尹达菲, 袁建敏. 阿拉伯木聚糖和阿拉伯低聚木糖的益生功能研究进展[J]. 动物营养学报,2017,29(2):365−373. [LEI Z, YIN D F, YUAN J M. Research progress on prebiotic effects of arabinoxylan and arabinoxylan oligosaccharides[J]. Chinese Journal of Animal Nutrition,2017,29(2):365−373. doi: 10.3969/j.issn.1006-267x.2017.02.001
|
[16] |
姚艳艳. 小麦麸皮中阿魏酸提取与纯化工艺研究[D]. 雅安: 四川农业大学, 2011.
YAO Y Y. Extraction and purification of ferulic acid from wheat bran[D]. Ya’an: Sichuan Agricultural University, 2011.
|
[17] |
SAMIR Z, ISMAIL D, RANDA G, et al. In vitro and molecular docking studies of DPPH with Phoenix dactylifera L. (Deglet-Nour) crude fruits extracts and evaluation of their antioxidant activity[J]. Asian Journal of Research in Chemistry,2020,13(1):52−59. doi: 10.5958/0974-4150.2020.00012.7
|
[18] |
吕青青. 小麦麸皮多糖的结构表征、硒化改性及生理活性研究[D]. 合肥: 合肥工业大学, 2020.
LV Q Q. Structural characterization, selenylation and physiological activities of polysaccharides from wheat bran[D]. Hefei: Hefei University of Technology, 2020.
|
[19] |
APEL K. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction[J]. Annu Annual Review of Plant Biology,2004,55:373−399. doi: 10.1146/annurev.arplant.55.031903.141701
|
[20] |
VALKO M, RHODES C J, MONCOL J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chemico-biological Interactions,2006,160(1):1−40. doi: 10.1016/j.cbi.2005.12.009
|
[21] |
ESPINOSA DIEZ C, MIGUEL V, MENNERICH D, et al. Antioxidant responses and cellular adjustments to oxidative stress[J]. Redox Biology,2015,6:183−197. doi: 10.1016/j.redox.2015.07.008
|
[22] |
于晨, 董超然, 张照辉, 等. 8-羟基脱氧鸟嘌呤作为DNA氧化损伤标志物的研究现状[J]. 中国临床药理学杂志,2017,33(13):1267−1270. [YU C, DONG C R, ZHANG Z H, et al. Review of the research on 8-hydroxy-2-deoxyguanosine as a DNA oxidative damage marker[J]. The Chinese Journal of Clinical Pharmacology,2017,33(13):1267−1270.
|
[23] |
段元霄. 麦麸阿魏酰聚糖对大鼠抗氧化功能的影响及其作用机制[D]. 呼和浩特: 内蒙古农业大学, 2018.
DUAN Y X. Effects of feruloylated saccharides on antioxidative capacity in wistar rats and the its regulation mechanism[D]. Hohhot: Inner Mongolia Agricultural University, 2018.
|
[24] |
史俊祥. 麸皮多糖微生物发酵制备及其粗制品抗氧化活性的研究[D]. 呼和浩特: 内蒙古农业大学, 2017.
SHI J X. Re-search on the microbial fermentation of wheat bran polysaccharides and antioxidant activity of crude polysaccharide[D]. Hohhot: Inner Mongolia Agricultural University, 2017.
|
[25] |
徐元庆. 壳聚糖对断奶仔猪氧化应激的缓解作用及其机理研究[D]. 呼和浩特: 内蒙古农业大学, 2018.
XU Y Q. Study on the mitigation action of chitosan on oxidative stress of weaned piglets and underlying mechanism[D]. Hohhot: Inner Mongolia Agricultural University, 2018.
|
[26] |
SZKLARZ G. Role of Nrf2 in oxidative stress and toxicity[J]. Annual Review of Pharmacology and Toxicology,2013,53(1):401. doi: 10.1146/annurev-pharmtox-011112-140320
|
[27] |
CHEN Q, TAO J, XIE X. Astaxanthin promotes Nrf2/ARE signaling to inhibit HG-induced renalfibrosis in GMCs[J]. Mar Drugs,2018,16(4):E117. doi: 10.3390/md16040117
|
[28] |
孙健乐, 夏振炜, 张雪洪, 等. 保护基因HO在组织细胞中的作用及其机制研究进展[J]. 生命科学,2003,15(4):220−223. [SUN J L, XIA Z W, ZHANG X H, et al. The advances on the protective action and mechanism of heme oxygenase gene in tissues and cells[J]. Chinese Bulletin of Life Sciences,2003,15(4):220−223. doi: 10.3969/j.issn.1004-0374.2003.04.007
|
[29] |
ENOMOTO A, ITOH K, NAGAYOSHI E, et al. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes[J]. Toxicological Sciences,2001,59(1):169−177. doi: 10.1093/toxsci/59.1.169
|
[30] |
WILD A C, MULCAHY R T. Regulation of γ-glutamylcysteine synthetase subunit gene expression: Insights into transcriptional control of antioxidant defenses[J]. Free Radical Research,2000,32(4):281−301. doi: 10.1080/10715760000300291
|
[31] |
CERIELLO A, MOTZ E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited[J]. Arterioscler Thromb Vasc Biol,2004,24:816−823. doi: 10.1161/01.ATV.0000122852.22604.78
|
[1] | LI Suixin, HUO Yunlei, WU Yunpeng, LI Jiahui, CHEN Bo, WANG Yan. Preparation,Characterization and Adsorption Properties of Hydrophilic Syringostrobin Molecularly Imprinted Microspheres[J]. Science and Technology of Food Industry, 2021, 42(5): 72-77,92. DOI: 10.13386/j.issn1002-0306.2020050050 |
[2] | YAN Xiang, ZHANG Shao-fei, WANG Du-liu, PEI Ping, WANG Wen-jian, LI Juan, LI Fei, ZHAO Yan-xia. Study on Preparation of Activated Carbon from Soybean Straw and Its Adsorption Performance on Cu2+[J]. Science and Technology of Food Industry, 2021, 42(1): 68-74. DOI: 10.13386/j.issn1002-0306.2019080216 |
[3] | ZHOU You-quan, TANG Ting-fan, CHENG Hao, HUANG Fang-li, TIAN Yu-hong. Study on Adsorption Properties of Chitosan for Tannic Acid in Sucrose Solution[J]. Science and Technology of Food Industry, 2020, 41(3): 12-15,21. DOI: 10.13386/j.issn1002-0306.2020.03.003 |
[4] | WU Chun, SUN Tian-yi, MA Lin. Evaluation of Adsorption Property of Modified Magnetic Chitosan to Carmine[J]. Science and Technology of Food Industry, 2020, 41(1): 25-31,37. DOI: 10.13386/j.issn1002-0306.2020.01.005 |
[5] | CAI Hong-mei, MENG Wen-jing. Preparation of molecularly imprinted polymer foam and selective adsorption and separation of cyhalothrin[J]. Science and Technology of Food Industry, 2017, (22): 46-50. DOI: 10.13386/j.issn1002-0306.2017.22.010 |
[6] | ZHANG Nai-pian, WANG Cheng-ming, AO Wen-fang, LI Ke-chao, BAI Juan. Preparation and characterization of phytic acid molecularly imprinted polymer and its adsorption performance[J]. Science and Technology of Food Industry, 2017, (17): 75-79. DOI: 10.13386/j.issn1002-0306.2017.17.015 |
[7] | CHEN Xi, KUANG Ying, XIAO Man, WU Kao, YAN Wen-li, JIANG Fa-tang, HUANG Jing. Study on adsorption of plant polysaccharide aerogels[J]. Science and Technology of Food Industry, 2017, (11): 96-101. DOI: 10.13386/j.issn1002-0306.2017.11.010 |
[8] | ZHANG Xin-lin, LONG Wei, YU Shu-juan, YANG Yong-jun, ZHU Si-ming. Adsorption performance and kinetics of macroporous resin on sugarcane molasses pigments[J]. Science and Technology of Food Industry, 2015, (22): 111-114. DOI: 10.13386/j.issn1002-0306.2015.22.014 |
[9] | TANG Yi-wei, GAO Zi-yuan, GAO Jing-wen, WEI Li-qiao, LAN Jian-xing, LI Yi, GAO Xue, ZHANG De-fu, LI Jian-rong. Study on preparation and adsorption properties of pymetrozine molecularly imprinted polymers[J]. Science and Technology of Food Industry, 2015, (05): 91-94. DOI: 10.13386/j.issn1002-0306.2015.05.010 |
[10] | Study on the adsorption performance of molecular imprinting cross-linked chitosan resin on cadmium[J]. Science and Technology of Food Industry, 2013, (07): 126-129. DOI: 10.13386/j.issn1002-0306.2013.07.088 |
1. |
肖曼青,李芳,王展,沈汪洋. 物理改性对荞麦蛋白结构和理化特性的影响. 食品研究与开发. 2025(01): 98-105 .
![]() | |
2. |
甘传发,郭金英,白周亚. 姜黄素与蛋白质相互作用研究进展. 中国调味品. 2023(02): 199-204 .
![]() | |
3. |
张旭,卢娜,李兆杰,薛勇,袁诗涵,薛长湖,唐庆娟. 姜黄素光动力对牡蛎脂质氧化水解酶的影响. 食品工业科技. 2020(24): 1-6+12 .
![]() |