XIE Dan, LU Yanjie, LI Jiaxuan, et al. Optimization of Extraction Process and Antioxidant Activity of Ligusticum chuanxiong Protein by Response Surface Methodology[J]. Science and Technology of Food Industry, 2021, 42(21): 213−220. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030105.
Citation: XIE Dan, LU Yanjie, LI Jiaxuan, et al. Optimization of Extraction Process and Antioxidant Activity of Ligusticum chuanxiong Protein by Response Surface Methodology[J]. Science and Technology of Food Industry, 2021, 42(21): 213−220. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030105.

Optimization of Extraction Process and Antioxidant Activity of Ligusticum chuanxiong Protein by Response Surface Methodology

More Information
  • Received Date: March 08, 2021
  • Available Online: August 31, 2021
  • The aim of this study was to optimize the extraction process of Ligusticum chuanxiong protein (LCP) and to investigate its antioxidant activity. Based on single factor experiment, Box-Behnken response surface methodology was used to optimize the extraction process of LCP, with solid-liquid ratio, extraction time, extraction solvent pH as the factors, and extraction rate of LCP as the index. The molecular weight range of LCP was determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The isoelectric point (pI) and solubility of LCP were determined, and the antioxidant activity of LCP was investigated. The results showed that the optimal extraction conditions were solid-liquid ratio of 1:15 (g/mL), extraction time of 1.5 h and pH of 6. Under the optimized conditions, the extraction yield of LCP was (2.36%±0.13%), and the measured value was close to the theoretical value, indicating that the mathematical model could be used to optimize the extraction process of LCP. Under the optimal conditions, the molecular weight of the extracted LCP was 17~48 kDa, the isoelectric point was 3.88, the solubility was 96% at pH8. The IC50 of hydroxyl radical scavenging activity was 1.18 mg/mL, the IC50 of superoxide anion radical scavenging activity was 0.57 mg/mL, and the IC50 of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity was 1.31 mg/mL. LCP extracted by this method has good antioxidant activity, which can provide experimental ideas for further research and development of LCP antioxidant activity.
  • [1]
    国家药典委员会.中华人民共和国药典.一部[S].北京: 中国医药科技出版社, 2020: 42.

    National Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China. One[S]. Beijing: China Medical Science and Technology Press, 2020: 42.
    [2]
    Chen Z J, Zhang C, Gao F, et al. A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong)[J]. Food & Chemical Toxicology,2018:S0278691518301248.
    [3]
    冯帅, 李峰, 王心. 50种中药总蛋白含量与寒热药性的相关性研究[J]. 辽宁中医杂志,2010,37(8):1412−1414. [Feng S, Li F, Wang X. Correlation between total protein content of 50 kinds of Chinese herbs and cold and heat properties[J]. Liaoning Journal of Traditional Chinese Medicine,2010,37(8):1412−1414.
    [4]
    Aya U, Vasudevanpillai B, Yasukazu Y. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer’s disease, Parkinson’s disease, and diabetes[J]. Free Radical Research,2017,51(4):413−427. doi: 10.1080/10715762.2017.1315114
    [5]
    Feng Wang, Yizhong Zhang, Ling Xu, et al. An efficient ultrasound-assisted extraction method of pea protein and its effect on protein functional properties and biological activities[J]. LWT,2020:127.
    [6]
    懿化, 王星滟, 张武霞, 等.黑豆糖蛋白的结构分析及抗氧化和免疫活性[J/OL].食品科学: 1−13[2021-05-05]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201229.1000.050.html.

    Yi Hua, Wang Xingyan, Zhang Wuxia, et al. Structural analysis of black bean glycoprotein and its antioxidant and immune activities [J/OL]. Food Science: 1−13 [2021-05-05]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201229.1000.050.html.
    [7]
    邓辉, 崔绍进, 朱富成, 等. 霍山石斛糖蛋白的提取方法优选及抗氧化活性分析[J]. 生物学杂志,2019,36(2):111−115. [Deng H, Cui S J, Zhu F C, et al. Optimization of extraction methods and antioxidant activity analysis of glycoproteins from Dendrobium huoshenii[J]. Chinese Journal of Biology,2019,36(2):111−115.
    [8]
    王苗, 张红印, 范琳, 等. 葛根蛋白提取工艺及其体外抗氧化性研究[J]. 食品研究与开发,2021,42(1):73−79. [Wang M, Zhang H Y, Fan L, et al. Study on extraction technology and antioxidant activity of pueraria protein in vitro[J]. Food Research and Development,2021,42(1):73−79.
    [9]
    Ycza B, Clw A, Cfm C, et al. Interactions of grape seed procyanidins with soy protein isolate: Contributing antioxidant and stability properties[J]. LWT,2019,115:108465. doi: 10.1016/j.lwt.2019.108465
    [10]
    赵营莉, 李娟, 方兴, 等. 蒙古黄芪和膜荚黄芪水溶性蛋白表达[J]. 中国实验方剂学杂志,2020,26(5):145−152. [Zhao Y L, LI J, Fang X, et al. Expression of water-soluble proteins in Astragalus mongolicus and Astragalus membranaceus[J]. Chinese Journal of Experimental Formulae,2020,26(5):145−152.
    [11]
    Hejazi T H, Bashiri M. Optimization of probabilistic multiple response surfaces[J]. Applied Mathematical Modelling,2012,36(3):1275−1285. doi: 10.1016/j.apm.2011.07.067
    [12]
    Ratanasumarn N, Chitprasert P. Cosmetic potential of lignin extracts from alkaline-treated sugarcane bagasse: Optimization of extraction conditions using response surface methodology[J]. International Journal of Biological Macromolecules,2020,153:138−145. doi: 10.1016/j.ijbiomac.2020.02.328
    [13]
    贺小燕. 甘草蛋白自组装行为研究[D].福州: 福州大学, 2013.

    He X Y. Study on self-assembly behavior of glycyrrhiza protein [D]. Fuzhou: Fuzhou University, 2013.
    [14]
    JianTing Y, CaiE W, YingYing L, et al. Identification and purification of an allergic glycoprotein from Ginkgo biloba Kernel[J]. 中国农业科学: 英文版,2011,10(4):631−641.
    [15]
    Sethi Swati, Yadav D N, Snigdha Sneha, et al. Optimization of process parameters for extraction of protein isolates from Khesari dhal (Lathyrus sativus L)[J]. LWT,2021:137.
    [16]
    张蜀艳, 蒲建萍, 李政. 白花蛇舌草和半枝莲总黄酮提取工艺优化及抗氧化性研究[J]. 食品研究与开发,2019,40(4):91−96. [Zhang S Y, Pu J P, Li Z. Study on the extraction process and antioxidant activity of total flavonoids from Hedyotis variegata and Scutellaria chinensis[J]. Food Research and Development,2019,40(4):91−96. doi: 10.3969/j.issn.1005-6521.2019.04.018
    [17]
    Deepanshu, Garg, Snehasis, et al. Optimizing the extraction of protein from Prosopis cineraria seeds using response surface methodology and characterization of seed protein concentrate[J]. LWT,2019,117:108630−108630.
    [18]
    Dipak Das, Nisar A. Mir, Narender Kumar Chandla, Sukhcharn Singh, Combined effect of pH treatment and the extraction pH on the physicochemical, functional and rheological characteristics of amaranth (Amaranthus hypochondriacus) seed protein isolates[J].Food Chemistry, 2021, 353, 129466.
    [19]
    Jarpa-Parra M, Bamdad F, Wang Y, et al. Optimization of lentil protein extraction and the influence of process ph on protein structure and functionality[J]. LWT - Food Science and Technology,2014,57(2):461−469. doi: 10.1016/j.lwt.2014.02.035
    [20]
    Feng Y N, Zhang X F. Polysaccharide extracted from Huperzia serrata using response surface methodology and its biological activity[J]. International Journal of Biological Macromolecules,2020:157.
    [21]
    Mh A, Ai A, Sp B. Optimization of extraction and deamidation of edible protein from evening primrose (Oenothera biennis L.) oil processing by-products and its effect on structural and techno-functional properties[J]. Food Chemistry,2020:334.
    [22]
    Bedin S, Netto F M, Bragagnolo N, et al. Reduction of the process time in the achieve of rice bran protein through ultrasound-assisted extraction and microwave-assisted extraction[J]. Separation Science,2020,55(2):1577449.
    [23]
    Aya A, Ersus S. Optimization of enzyme assisted extraction of protein from the sugar beet (Beta vulgaris L.) leaves for alternative plant protein concentrate production[J]. Food Chemistry,2020:335.
    [24]
    Butt M S , Batool R. Nutritional and functional properties of some promising legumes protein isolates[J]. Pakistan Journal of Nutrition,2010,9(4).
    [25]
    Xue Y T, Misran A , Daim L, et al. Optimization of protein extraction for proteomic analyses of fresh and frozen “Musang King” durian pulps[J]. Food Chemistry,2021,343:128471. doi: 10.1016/j.foodchem.2020.128471
    [26]
    Slabi S A , Mathe C , Basselin M , et al. Multi-objective optimization of solid/liquid extraction of total sunflower proteins from cold press meal[J]. Food Chemistry,2020,317:126423. doi: 10.1016/j.foodchem.2020.126423
    [27]
    Cheung Y C, Siu K C, Liu Y S, et al. Molecular properties and antioxidant activities of polysaccharide–protein complexes from selected mushrooms by ultrasound-assisted extraction[J]. Process Biochemistry,2012,47(5):892−895. doi: 10.1016/j.procbio.2012.02.004
    [28]
    Chen C , Sun-Waterhouse D , Y Zhang, et al. The chemistry behind the antioxidant actions of soy protein isolate hydrolysates in a liposomal system: Their performance in aqueous solutions and liposomes[J]. Food Chemistry,2020:323.
    [29]
    Raikos V. Effect of heat treatment on milk protein functionality at emulsion interfaces: A review[J]. Food Hydrocolloids,2010,24(4):259−265. doi: 10.1016/j.foodhyd.2009.10.014
    [30]
    Sf A , Em B , Qag B . Ali Golimovahhed. Grass pea (Lathyrus sativus L.) protein isolate: The effect of extraction optimization and drying methods on the structure and functional properties[J]. Food Hydrocolloids,2018:74.
    [31]
    Umeno A, Biju V, Yoshida Y. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer's disease, Parkinson's disease, and diabetes[J]. Free Radical Research,2017:413.
    [32]
    He Z, Zhang D, Olanya O M. Antioxidant activities of the water-soluble fractions of glandless and glanded cottonseed protein[J]. Food Chemistry,2020,325:126907. doi: 10.1016/j.foodchem.2020.126907
    [33]
    Rd A , Lz B , Gr B , et al. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties[J]. Food Chemistry,2020:330.
    [34]
    Wang Y Y, Wang C Y, Wang S T, et al. Physicochemical properties and antioxidant activities of tree peony (Paeonia suffruticosa Andr.) seed protein hydrolysates obtained with different proteases[J]. Food Chemistry,2021:345.
    [35]
    Li Z, Wang B, Chi C, et al. Purification and characterization of an antioxidant glycoprotein from the hydrolysate of Mustelus griseus[J]. International Journal of Biological Macromolecules,2013,52:267−274. doi: 10.1016/j.ijbiomac.2012.10.025
    [36]
    Zhang W X , Song D, Xu D, et al. Characterization of polysaccharides with antioxidant and immunological activities from Rhizoma Acori Tatarinowii[J]. Carbohydrate Polymers,2015:133.
  • Cited by

    Periodical cited type(12)

    1. 李坤,张俊磊,申羽婷,叶树芯,高晴,和劲松. 微酸性电解水和超高压并行联合对三七块茎表面大肠杆菌杀菌效果研究. 食品安全质量检测学报. 2025(01): 223-233 .
    2. 李佳,钟洪亮,丁甜,韩文静,刘书成,魏帅. 超声联合微酸性电解水处理克氏原螯虾条件优化及对其品质影响. 包装工程. 2024(03): 139-146 .
    3. 韩家红,张国生,余晨琦,臧瑶,周伊心,舒邓群,臧一天. 微酸性电解水与物理或化学方法联合在畜牧业中的应用展望. 江西畜牧兽医杂志. 2024(02): 34-36 .
    4. 张锦雯,姜启兴,许艳顺,杨方,夏文水. 基于高通量测序分析冷冻熟制小龙虾加工过程中微生物的消长规律. 食品科学. 2023(06): 151-157 .
    5. 谌玲薇,邱文兴,杜柳,熊光权,乔宇,汪超,汪兰,黎彩. 不同清洗方式下克氏原螯虾肉细菌群落及理化性质的变化. 现代食品科技. 2023(03): 222-229 .
    6. 罗小莹,李述刚,褚上,吴文锦,熊光权,乔宇,汪兰,杨玉平,康骏,章登华. 过氧乙酸和二氧化氯清洗剂对熟制小龙虾贮藏品质的影响. 食品安全质量检测学报. 2023(11): 70-77 .
    7. 聂梅梅,吴海虹,宗隽青,李大婧,张钟元,刘春泉,牛丽影,刘春菊. 基于高通量测序对不同清洗处理荠菜细菌群落结构分析. 食品科技. 2023(08): 302-308 .
    8. 徐露露,杨秋红,艾晓辉. 克氏原螯虾危害物分析及食用健康风险评价. 中国渔业质量与标准. 2023(04): 60-70 .
    9. 孔金花,温丽敏,诸永志,葛庆丰,卞欢,闫征,徐为民. 高温熟制杀菌对小龙虾品质及贮藏特性的影响. 肉类研究. 2022(03): 38-44 .
    10. 唐志龙,HAMZAH Aleryani,高晴,毕保良,和劲松. 微酸性电解水凝胶对天麻鲜切片贮藏品质的影响. 食品安全质量检测学报. 2022(08): 2625-2632 .
    11. 魏奇,张锶莹,吴艳钦,翁馨,韩坤煌,陈美霞. 酸性电解水在食品中的应用及其保鲜作用的研究进展. 食品工业. 2022(06): 279-283 .
    12. 孔金花,温丽敏,诸永志,葛庆丰,卞欢,闫征,徐为民. 不同加工方式对熟制克氏原螯虾冷藏期间品质的影响. 食品工业科技. 2022(17): 371-380 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (234) PDF downloads (29) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return