ZHU Wenqing, LI Lingyu, ZHANG Li, et al. Network Pharmacology Study on the Antibacterial Activity of Caffeoylquinic Acids[J]. Science and Technology of Food Industry, 2021, 42(13): 11−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030017.
Citation: ZHU Wenqing, LI Lingyu, ZHANG Li, et al. Network Pharmacology Study on the Antibacterial Activity of Caffeoylquinic Acids[J]. Science and Technology of Food Industry, 2021, 42(13): 11−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030017.

Network Pharmacology Study on the Antibacterial Activity of Caffeoylquinic Acids

  • Objective:To explore the antibacterial mechanism of caffeoylquinic acids based on network pharmacology. Methods: Through literature mining and database search, the corresponding targets of caffeoylquinic acids, antibacterial related targets, and the common targets of them were obtained. The common targets were used to construct a protein-protein interaction (PPI) network, and perform Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genome (KEGG) analysis. Results: Caffeoylquinic acids correspond to 483 targets, 805 antibacterial related targets, and 75 antibacterial targets of caffeoylquinic acids, and the key targets were TNFAKT1、ALBMMP9、EGFR and MAPK8. GO analysis and KEGG pathway enrichment analysis results showed that the antibacterial mechanism of caffeoylquinic acids mainly involves biological processes such as response to stimulus, metabolic processes, biological regulation, multicellular biological processes, cell communication, and work together through pathways such as extracellular matrix organization, collagen degradation, activation of matrix metalloproteinases and nerve growth factor signalling. The results of molecular docking verification between compounds and molecular targets were good, which verified the accuracy of the prediction of network construction. Conclusion: This study reveals that the antibacterial activity of caffeoylquinic acids has the characteristics of multiple targets and multiple pathways, which lays the foundation for further research on its molecular mechanism.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return