ZHANG Yufeng, CHEN Yingxian, WEN Yuanfen, et al. Structure and Biological Activities in Vitro Analysis of Polysaccharide from Coconut (Cocos nucifera L.) Haustorium[J]. Science and Technology of Food Industry, 2021, 42(17): 78−84. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010204.
Citation: ZHANG Yufeng, CHEN Yingxian, WEN Yuanfen, et al. Structure and Biological Activities in Vitro Analysis of Polysaccharide from Coconut (Cocos nucifera L.) Haustorium[J]. Science and Technology of Food Industry, 2021, 42(17): 78−84. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010204.

Structure and Biological Activities in Vitro Analysis of Polysaccharide from Coconut (Cocos nucifera L.) Haustorium

More Information
  • Received Date: January 24, 2021
  • Available Online: June 30, 2021
  • Coconut haustorium polysaccharide (CHP) was prepared by the method of water extraction and alcohol precipitation, its structural characteristics consist of monosaccharide composition, molecular weight size and distribution and infrared spectrum and biological activities in vitro such as antioxidant and hypoglycemic enzyme inhibiting activities were also analyzed. Results showed that CHP was an acidic heteropolysaccharide with the content of neutral sugar and uronic acid of 42.33% and 21.34%, which might contain pyran ring structure. Monosaccharide composition analysis indicated that CHP was mainly composed of fucose, rhamnose, arabinose, galactose, glucose, xylose and galacturonic acid and the molar ratio was 1.00:4.40:21.27:21.07:51.76:7.06:4.33. Molecular weight analysis showed that the CHP was composed of three components, of which peak 3 was the main component with the molecular weight of 1.53×104 g/moL. Besides, DPPH and hydroxyl radical scavenging rate of CHP at 6 mg/mL were 82.49% and 85.83%, respectively. And its inhibition rate on α-glucosidase was 69.91% at 100 mg/mL. These research results could provide data support for the processing and utilization of coconut haustorium in functional food or medicine.
  • [1]
    Zhang Y F, Zheng Y J, Duan K J, et al. Preparation, antioxidant activity and protective effect of coconut testa oil extraction on oxidative damage to human serum albumin[J]. International Journal of Food ence & Technology,2016,51(4):946−953.
    [2]
    卢琨, 侯媛媛. 海南省椰子产业分析与发展路径研究[J]. 广东农业科学,2020,47(6):145−151. [Lu K, Hou Y Y. Analysis and development path of coconut industry in Hainan Province[J]. Guangdong Agricultural Sciences,2020,47(6):145−151.
    [3]
    陈良秋, 万玲. 椰子吸器的开发利用[J]. 现代农业科技,2007(4):29. [Chen L Q, Wan L. Development and utilization of coconut (Cocos nucifera L.) haustorium[J]. Modern Agricultural Science and Technology,2007(4):29. doi: 10.3969/j.issn.1007-5739.2007.04.019
    [4]
    Manivannan A, Bhardwaj R, Padmanabhan S, et al. Biochemical and nutritional characterization of coconut (Cocos nucifera L.) haustorium[J]. Food Chemistry,2018,238:153−159. doi: 10.1016/j.foodchem.2016.10.127
    [5]
    Yukio Sugimura. Ultrastructural observation of the haustorium in germinating coconut[J]. Japanese Journal of Tropical Agriculture,1998,42(3):179−181.
    [6]
    陈良秋, 万玲. 椰子吸器发育规律研究[J]. 现代农业科技,2007(5):12. [Chen L Q, Wan L. Study on the development of (Cocos nucifera L.) haustorium[J]. Modern Agricultural Science and Technology,2007(5):12. doi: 10.3969/j.issn.1007-5739.2007.05.006
    [7]
    R. 蔡尔德著, 张诒仙译. 椰子[M]. 北京: 农业出版社, 1984, 17- 88.

    Child R, translated by Zhang Y X. Coconut[M]. Agricultural Press, 1984, 17-88.
    [8]
    López-Villalobos A, Dodds P F, Roland H. Changes in fatty acid composition during development of tissues of coconut (Cocos nucifera L.) embryos in the intact nut and in vitro[J]. Journal of Experimental Botany. 2001, 358 (5): 933−942.
    [9]
    李静, 王仁才, 杨耀东, 等. 椰子萌发过程中吸器内含物的变化规律[J]. 南方农业学报,2017,48(12):2163−2168. [Li J, Wang R C, Yang Y D, et al. Variation regulation of haustorium inclusion during coconut germination[J]. Journal of Southern Agriculture,2017,48(12):2163−2168. doi: 10.3969/j.issn.2095-1191.2017.12.08
    [10]
    Li J, Htwe Y M, Wang Y, et al. Analysis of sugars and fatty acids during haustorium development and seedling growth of coconut[J]. Agronomy Journal,2019,111(5):2341−2349. doi: 10.2134/agronj2019.02.0137
    [11]
    Arivalaga M, Manikantan M R, Yasmeen A M, et al. Physiochemical and nutritional characterization of coconut (Cocos nucifera L.) haustorium based extrudates[J]. LWT - Food Science and Technology,2018,89:171−178. doi: 10.1016/j.lwt.2017.10.049
    [12]
    赵小龙, 杨涛, 汤进, 等. 水溶性茯苓多糖PWP-Y提取工艺优化及其分子量测定的研究[J]. 武汉轻工大学学报,2016,35(1):34−38. [Zhao X L, Yang T, Tang J. et al. et al. Optimization of extraction process and molecular weight determination of pachymose from poria cocos[J]. Journal of Wuhan Polytechnic University,2016,35(1):34−38. doi: 10.3969/j.issn.2095-7386.2016.01.008
    [13]
    Zhuang Y F, Zhang Y L, Sun L P. Characteristics of fibre-rich powder and antioxidant activity of pitaya (Hylocereus undatus) peels[J]. International Journal of Food Science & Technology,2012,47:1279−1285.
    [14]
    郭欣, 高向东, 杨晓兵. 酸性多糖中的葡萄糖醛酸与中性糖的含量测定[J]. 中国生化药物杂志,2004,25(2):100−101. [Guo X, Gao X D, Yang X B. Determination of content glucuronic acid and neutral sugar of acidic polysaccharide[J]. Chinese Journal of Biochemical Pharmaceutics,2004,25(2):100−101. doi: 10.3969/j.issn.1005-1678.2004.02.014
    [15]
    Bradford M M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,25(1):248−256.
    [16]
    王杰, 刘瑞珍, 刘东超, 等. 槐角多糖抗氧化活性研究[J]. 食品研究与开发,2020,41(1):25−29. [Wang J, Liu R Z, Liu D C, et al. Antioxidant activity of sophorae fructus polysaccharides[J]. Food Research and Development,2020,41(1):25−29.
    [17]
    钱海峰, 黄冬云, 苑华宁, 等. 纤维素酶对米糠可溶性膳食纤维含量及抗氧化性的影响[J]. 食品工业科技,2014,35(15):112−115, 120. [Qian H F, Huang D Y, Yuan H N, et al. Effects of cellulase enzyme modification on soluble dietary fibre content and antioxidant activity of rice bran[J]. Science and Technology of Food Industry,2014,35(15):112−115, 120.
    [18]
    朱娇娇, 周安婕, 丁怡, 等. 3种天然植物多糖的抗氧化与降血糖活性研究[J]. 粮食与油脂,2018,31(8):96−100. [Zhu J J, Zhou A J, Ding Y, et al. Antioxidant and hypoglycemic activities of three natural plant polysaccharides[J]. Cereals & Oils,2018,31(8):96−100. doi: 10.3969/j.issn.1008-9578.2018.08.025
    [19]
    钟丽霞, 江震宇, 汪嘉妮, 等. 山楂多糖提取工艺优化及其降血糖、降血脂活性[J]. 食品工业科技,2019,40(13):119−124, 147. [Zhong L X, Jiang Z Y, Wang J N, et al. Optimization of extraction technology of hawthorn polysaccharides and its hypoglycemic and hypolipidemic activity[J]. Science and Technology of Food Industry,2019,40(13):119−124, 147.
    [20]
    胡卫珍, 齐振宇, 陈晓芳, 等. 凝胶渗透色谱联用多角度激光光散射测定铁皮石斛多糖分子量及其分布[J]. 浙江农业科学,2020,61(6):134−135, 143. [Hu W Z, Qi Z Y, Chen X F, et al. Determination of molecular weight and distribution of Dendrobium officinale polysaccharides by multi angle laser light scattering coupled with gel permeation chromatography[J]. Journal of Zhejiang Agricultural Sciences,2020,61(6):134−135, 143.
    [21]
    Romdhane M B, Haddar A, Ghazala I, et al. Optimization of polysaccharides extraction from watermelon rinds: structure, functional and biological activities[J]. Food Chemistry,2017,216:355−364. doi: 10.1016/j.foodchem.2016.08.056
    [22]
    张丽丽, 范琳琳, 聂启兴, 等. 发酵虫草菌丝体多糖提取条件优化及其结构分析[J]. 食品科学,2017,38(14):91−96. [Zhang L L, Fan L L, Nie Q X, et al. Optimization of extraction and structural analysis of polysaccharide from Paecilomyces hepiali Chen & Dai[J]. Food Science,2017,38(14):91−96. doi: 10.7506/spkx1002-6630-201714014
    [23]
    Rajesh Thambiraj S, Phillips M, Rao Koyyalamudi S, et al. Yellow lupin (lupinus luteus l.) polysaccharides: Antioxidant, immol/Lunomodulatory and prebiotic activities and their structural characterisation[J]. Food Chemistry,2018,267(30):319−328.
    [24]
    Zhang W, Song D, Xu D, et al. Characterization of polysaccharides with antioxidant and immol/Lunological activities from Rhizoma Acori Tatarinowii[J]. Carbohydrate Polymers,2015,133(8):154−162.
    [25]
    Zhang Y F, Duan X, Zhuang Y L. Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin[J]. Peptides,2012,38(1):13−21. doi: 10.1016/j.peptides.2012.08.014
    [26]
    Song Y, Ni Y, Hu X, et al. Effect of phosphorylation on antioxidant activities of pumpkin (Cucurbita Pepo, lady godiva) polysaccharide[J]. International Journal of Biological Macromolecules,2015,81:41−48. doi: 10.1016/j.ijbiomac.2015.07.055
    [27]
    Zhang H, Zhao J, Shang H, et al. Extraction, purification, hypoglycemic and antioxidant activities of red clover (trifolium pratense L.) polysaccharides[J]. International Journal of Biological Macromolecules,2020,148:750−760. doi: 10.1016/j.ijbiomac.2020.01.194
  • Cited by

    Periodical cited type(13)

    1. 宗子歆,姚子昂,张玉龙,陈鑫,曹际娟,胡冰. Ⅰ型胶原蛋白的结构、提取及应用研究进展. 食品研究与开发. 2025(04): 169-176 .
    2. 龚受基,覃媚,戴梓茹,蒋红明,郭德军. 响应面法优化相思藤黄酮提取工艺及其体外抗氧化活性分析. 食品工业科技. 2024(06): 178-185 . 本站查看
    3. 罗联钰,徐清清,朱金燕,魏维鑫,吴清朋,刘家光. 超声前处理对牡蛎蛋白水解度的影响. 食品工业. 2024(04): 17-22 .
    4. 武婷,康明丽,程雅如,申彤,李依孜. 微波辅助酶法提取香菇柄蛋白工艺研究. 粮食与油脂. 2024(09): 129-134 .
    5. 张倩,张文博,陈滢竹,姜旭,汤璐,王刚,李艳丽. 榛蘑蛋白提取工艺的优化研究. 中国调味品. 2023(05): 118-124 .
    6. 窦容容,赵春青,颜子恒,桑亚新,孙纪录,亢春雨. 超声波对鲟鱼皮酸溶性胶原蛋白提取及理化特性的影响. 中国食品学报. 2023(10): 125-135 .
    7. 李璐,李鹏,孙慧娟,马凯华,马俪珍,李玲. 响应面优化超声波辅助革胡子鲶鱼鱼头汤熬煮工艺. 肉类研究. 2022(02): 27-32 .
    8. 黄可承,宫萱,唐嘉诚,陈彦婕,包建强. 水产品副产物胶原蛋白制备方法及应用. 精细化工. 2022(09): 1757-1766 .
    9. 赵琼瑜,胡鉴,李彩燕,徐树杰,宋伟. 超声波辅助鳖甲脱钙工艺优化及其对胶原蛋白生化特征的影响. 食品工业科技. 2022(22): 39-51 . 本站查看
    10. 李家柔,倪剑波,何静怡,许惠雅,井璐楠,施文正. 超声辅助酶法提取罗非鱼皮胶原蛋白及其溶解特性. 渔业现代化. 2022(06): 127-134 .
    11. 陈文娟. 响应面法优化超声协同胃蛋白酶提取鲣鱼皮胶原蛋白的工艺研究. 延边大学农学学报. 2022(04): 60-66 .
    12. 魏沈芳,张顺棠,刘昆仑,段晓杰,高立栋. 超声辅助酶法制备鸡皮胶原蛋白的工艺优化. 河南工业大学学报(自然科学版). 2022(06): 59-66 .
    13. 袁子杰,秦洋,杨凤英,邓志萍. 超声辅助技术开发新型黑茶酒. 食品科技. 2021(11): 90-97 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (300) PDF downloads (31) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return