LI Hailing, HUANG Yanping, ZHOU You, et al. Determination of 7 Nucleosides Contents in Cortex of Morus australis, Morus cathayana and Morus alba [J]. Science and Technology of Food Industry, 2021, 42(19): 298−306. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010190.
Citation: LI Hailing, HUANG Yanping, ZHOU You, et al. Determination of 7 Nucleosides Contents in Cortex of Morus australis, Morus cathayana and Morus alba [J]. Science and Technology of Food Industry, 2021, 42(19): 298−306. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010190.

Determination of 7 Nucleosides Contents in Cortex of Morus australis, Morus cathayana and Morus alba

More Information
  • Received Date: January 24, 2021
  • Available Online: August 03, 2021
  • Objective: Seven nucleosides, including adenine, adenosine, cytidine, hypoxanthine, guanosine, uracil and 2'- deoxyadenosine, were determined and analyzed by HPLC in the root bark of Morus australis, Morus cathayana and Morus alba from different areas, so as to provide reference for formulating quality standards. Methods: A venusil MP C18 (5 μm, 250 mm × 4.6 mm) column was used. The mobile phases of methanol and water were used for gradient elution. Detection wavelength was 260 nm. The flow rate was 1.0 mL/min. The column temperature was 30 ℃. Results: There was a good linear relationship between the seven nucleosides in their respective concentration ranges (r≥0.9998). The average recoveries were 97.49%~101.45% with RSD ≤3%. There were significant differences in the contents of seven nucleosides in the root bark of Morus australis, Morus cathayana and Morus alba from different producing areas. The contents of uracil and hypoxanthine in the root bark of Morus alba and Morus australis were higher, but the contents of hypoxanthine in different varieties were different, and the content of cytidine was the lowest. The content of guanosine and adenine in root bark of Morus alba was higher than that of 2'- deoxyadenosine. The nucleoside composition of Morus australis and Morus cathayana was slightly lower than that of Morus alba. The results of independent sample t-test showed that there was no significant difference among the seven nucleosides in the root bark of Morus australis, Morus cathayana and Morus alba (P>0.05) and its nucleoside components had certain isotropy. The results of principal component analysis and cluster analysis showed that Morus australis, Morus cathayana and Morus alba could not be distinguished according to the difference of nucleoside content, indicating that Australis Cortex Mori from Morus australis, Morus cathayana could be used as the substitute of Cortex Mori. Conclusion: There is no significant difference in nucleoside contents among the root bark of Morus australis, Morus cathayana and Morus alba. This study provides a scientific basis for the study on the quality equivalence of Morus australis, Morus cathayana and Morus alba.
  • [1]
    李玉丽, 蒋屏, 孙梦林, 等. 经典名方中桑白皮的本草考证[J]. 中国实验方剂学杂志,2020,26(18):36−44. [Li Y L, Jiang P, Sun M L, et al. Textual research of Mori Cortex in classical prescriptions[J]. Chinese Journal of Experimental Traditional Medical Formulae,2020,26(18):36−44.
    [2]
    国家药典委员会. 中华人民共和国药典: 2020年版一部[M]. 北京: 中国医药科技出版社, 2020: 311.

    Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China: 2020 edition 1[M]. Beijing: China Medical Science Press, 2020: 311.
    [3]
    孙伟, 叶润, 蔡静, 等. 大孔树脂纯化桑白皮多糖的工艺研究[J]. 食品工业科技,2020,41(14):129−133. [Sun W, Ye R, Cai J, et al. Purification of polysaccharide from Mori Cortex by macroporous resin[J]. Science and Technology of Food Industry,2020,41(14):129−133.
    [4]
    四川省食品药品监督管理局. 四川省中药材标准: 2010年版[M]. 成都: 四川科学技术出版社, 2010: 523−525.

    Si Chuan Food and Drug Administration. Standard of traditional Chinese medicine in Sichuan Province: 2010 edition[M]. Chengdu: Sichuan Science and Technology Press, 2010: 523−525.
    [5]
    郭东贵, 俸婷婷, 张敏, 等. 桑白皮提取物对破骨细胞和成骨细胞活性的影响[J]. 食品工业科技,2020,41(8):316−320. [Guo D G, Feng T T, Zhang M, et al. Effect of Cortex Mori extract on the activity of osteoclasts and osteoblasts[J]. Science and Technology of Food Industry,2020,41(8):316−320.
    [6]
    Phimarn W, Wichaiyo K, Silpsavikul K, et al. A meta-analysis of efficacy of Morus alba Linn. to improve blood glucose and lipid profile[J]. European Journal of Nutrition,2017,56(4):1509−1521. doi: 10.1007/s00394-016-1197-x
    [7]
    Yuan Q, Zhao L. The mulberry (Morus alba L.) fruit-a review of characteristic components and health benefits[J]. Journal of Agricultural and Food Chemistry,2017,65(48):10383−10394. doi: 10.1021/acs.jafc.7b03614
    [8]
    Wu Y X, Kim Y J, Kwon T H, et al. Anti-inflammatory effects of mulberry (Morus alba L.) root bark and its active compounds[J]. Natural Product Research,2020,34(12):1786−1790. doi: 10.1080/14786419.2018.1527832
    [9]
    Tran H N K, Nguyen V T, Kim J A, et al. Anti-inflammatory activities of compounds from twigs of Morus alba[J]. Fitoterapia,2017,120:17−24. doi: 10.1016/j.fitote.2017.05.004
    [10]
    Park H J, Chi G Y, Choi Y H, et al. The root bark of Morus alba L. regulates tumor-associated macrophages by blocking recruitment and M2 polarization of macrophages[J]. Phytother Res,2020,34(12):3333−3344. doi: 10.1002/ptr.6783
    [11]
    冯志毅, 杨梦, 白义萍, 等. 桑白皮化学拆分组分免疫调节作用研究[J]. 世界科学技术-中医药现代化,2014,16(9):1968−1973. [Feng Z Y, Yang M, Bai Y P, et al. Study on immunomodulatory effect of chemical split fractions of Mori cortex[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2014,16(9):1968−1973. doi: 10.11842/wst.2014.09.019
    [12]
    高原, 方妍, 单梦瑶, 等. 基于色差原理分析不同产地桑白皮有效成分含量与颜色的相关性[J]. 中国药房,2021,32(2):213−219. [Gao Y, Fang Y, Shan M Y, et al. Correlation analysis between active ingredient content and cof Morus alba from different producing areas based on color difference principle[J]. China Pharmacy,2021,32(2):213−219. doi: 10.6039/j.issn.1001-0408.2021.02.15
    [13]
    刘玉雯. 药膳食疗治水肿[J]. 现代养生,2015(17):28−29. [Liu Y W. Treatment of edema with medicated diet[J]. Health Protection and Promotion,2015(17):28−29.
    [14]
    周浓, 杨勤. 中药养生学[M]. 北京: 中国中医药出版社, 2015: 144−222.

    Zhou N, Yang Q. Health preservation of traditional Chinese medicine[M]. China traditional Chinese Medicine Press, 2015: 144−222.
    [15]
    王慧娟. 桑白皮黄酮类化合物抗骨质疏松活性及作用机制的研究[D]. 贵阳: 贵州大学, 2019.

    Wang H J. Study on the anti-osteoporosis activity and mechanism of flavonoids from Cortex Mori abstract[D]. Guiyang: Guizhou University, 2019.
    [16]
    俸婷婷, 谢体波, 林冰, 等. 桑白皮总黄酮的镇痛抗炎药理作用研究[J]. 时珍国医国药,2013,24(11):2580−2582. [Feng T T, Xie T B, Lin B, et al. Analgesic and anti-inflammatory effects of total flavonoids in Cortex Mori[J]. Lishizhen Medicine and Materia Medica Research,2013,24(11):2580−2582.
    [17]
    张庆建. 鸡桑、华桑化学成分及生物活性研究[D]. 北京: 中国协和医科大学, 2007.

    Zhang Q J. Studies on the chemical constituents and bioactivities of Morus australis and Morus cathayana[D]. Beijing: China Union Medical College, 2007.
    [18]
    候宝林, 施洋, 赵俊芳, 等. 桑白皮化学成分及药理作用研究进展[J]. 辽宁中医杂志,2020,47(8):212−214. [Hou B L, Shi Y, Zhao J F, et al. Research progress of chemical compounds and pharmacological effects of Sangbaipi(Cortex Mori)[J]. Liaoning Journal of Traditional Chinese Medicine,2020,47(8):212−214.
    [19]
    Chan E W, Lye P Y, Wong S K. Phytochemistry, pharmacology, and clinical trials of Morus alba[J]. Chinese Journal of Natural Medicines,2016,14(1):17−30.
    [20]
    蔡森森. 桑白皮甾醇的提取及功能研究[D]. 长春: 吉林大学, 2013.

    Cai S S. Research on extraction and function of phytosterol from mulberry root bark[D]. Changchun: Jilin University, 2013.
    [21]
    王元成, 伍春, 陈虎, 等. 桑白皮中白藜芦醇、氧化白藜芦醇和桑皮苷的抗氧化活性[J]. 食品科学,2011,32(15):135−138. [Wang Y C, Wu C, Chen H, et al. Antioxidant activities of resveratrol, oxyresveratrol, esveratrol, mulberroside A from Cortex mori[J]. Food Science,2011,32(15):135−138.
    [22]
    刘一涵. 桑白皮化学成分、提取工艺及质量控制研究[D]. 吉首: 吉首大学, 2020.

    Liu Y H. Study on chemical composition, extraction process and quality control of Cortex Mori[D]. Jishou: Jishou University, 2020.
    [23]
    杨利红, 赵费敏, 张特, 等. 桑白皮抗炎活性成分的分离及抗炎机制研究[J]. 中华中医药学刊,2016,34(12):3008−3012. [Yang L H, Zhao F M, Zhang T, et al. Isolation of active compounds from Cortex Mori and its mechanism on anti-inflammatory[J]. Chinese Archives of Traditional Chinese Medicine,2016,34(12):3008−3012.
    [24]
    刘宝修, 黄建胜, 朱乃硕. AS1411介导STAT3反义寡核苷酸靶向抗肿瘤的作用[J]. 复旦学报(医学版),2017,44(4):422−429. [Liu B X, Huang J S, Zhu N S. A preliminary study of AS1411 mediated STAT3 antisense oligonucleotide targeting tumor cells[J]. Fudan University Journal of Medical Sciences,2017,44(4):422−429.
    [25]
    史明星, 刘金凤, 刘学娜, 等. 含硫、硒核苷的合成及其抗菌抗肿瘤活性研究[J]. 哈尔滨医科大学学报,2017,51(5):400−403, 408. [Shi M X, Liu J F, Liu X N, et al. Synthesis of sulfur or selenium-containing nucleosides and their antibacterial and antitumor activities[J]. Journal of Harbin Medical University,2017,51(5):400−403, 408. doi: 10.3969/j.issn.1000-1905.2017.05.004
    [26]
    彭伟梦. 一株炭样小单孢菌产新型核苷类抗生素的抗菌作用研究[D]. 南昌: 江西师范大学, 2013.

    Peng W M. Studies on the antibacterial activity of a new nucleoside antibiotic from a srain of Micromonospora cabonacea[D]. Nanchang: Jiangxi Normal University, 2013.
    [27]
    Niu G, Li Z, Huang P, et al. Engineering nucleoside antibiotics toward the development of novel antimicrobial agents[J]. The Journal of Antibiotics,2019,72(12):906−912. doi: 10.1038/s41429-019-0230-8
    [28]
    Bugg T D H, Kerr R V. Mechanism of action of nucleoside antibacterial natural product antibiotics[J]. The Journal of Antibiotics,2019,72(12):865−876. doi: 10.1038/s41429-019-0227-3
    [29]
    王子健, 李顺来, 于明武, 等. 6-烷氨基-2-乙硫基嘌呤核苷化合物的合成及抗血小板聚集活性研究[J]. 有机化学,2015,35(10):2205−2211. [Wang Z J, Li S L, Yu M W, et al. Synthesis of 6-alkylamino-2-ethylthiopurine nucleoside compounds and their antiplatelet aggregation activities[J]. Chinese Journal of Organic Chemistry,2015,35(10):2205−2211. doi: 10.6023/cjoc201504036
    [30]
    Reiss A B, Grossfeld D, Kasselman L J, et al. Adenosine and the cardiovascular system[J]. American Journal of Cardiovascular Drugs,2019,19(5):449−464. doi: 10.1007/s40256-019-00345-5
    [31]
    潘聪, 李占东, 苑鹏, 等. 高核苷酸酵母水解物对脂多糖诱导RAW264.7细胞免疫调节的影响[J]. 食品与发酵工业,2019,45(7):8−14. [Pan C, Li Z D, Yuan P, et al. Effects of high nucleotide yeast hydrolysates on immune regulation of RAW264.7 cells induced by LPS[J]. Food and Fermentation Industries,2019,45(7):8−14.
    [32]
    高爽. 抑制性脱氧寡核苷酸通过DNA感受器的免疫调节作用和治疗脓毒症性腹膜炎的机制探讨[D]. 长春: 吉林大学, 2017.

    Gao S. Immunoregulatory effect of suppressive oligodeoxynucleotides through DNA sensors and the mechanism in treatment of septic peritonitis[D]. Changchun: Jilin University, 2017.
    [33]
    王高峰. HPLC法同时测定党参中5种核苷和碱基[J]. 食品工业科技,2016,37(5):315−319. [Wang G F. Simultaneous determination of five nucleosides and bases in Radix Codonopsis by high performance liquid chromatography[J]. Science and Technology of Food Industry,2016,37(5):315−319.
    [34]
    孟莹, 王骞, 周浓, 等. 滇重楼野生品种与栽培品种核苷类成分质量等同性研究[J]. 西南农业学报,2019,32(8):1723−1729. [Meng Y, Wang Q, Zhou N, et al. Quality equivalence of nucleosides in wild and cultivated Paris polyphylla Smith var. yunnanensis[J]. Southwest China Journal of Agricultural Sciences,2019,32(8):1723−1729.
    [35]
    杨敏, 潘兴娇, 江静, 等. 不同产地栽培掌叶大黄中游离蒽醌、结合蒽醌和总蒽醌量的差异分析[J]. 大理大学学报,2016,1(10):9−13. [Yang M, Pan X J, Jiang J, et al. Difference analysis of free anthraquinones, combined anthraquinones and total anthraquinones in cultivated Rheum palmatum L. in different producing areas[J]. Journal of Dali University,2016,1(10):9−13. doi: 10.3969/j.issn.2096-2266.2016.10.003
    [36]
    叶琪琪, 杜冰洁, 张鹏葛, 等. 新疆伊贝母有效成分含量与土壤因子相关性分析[J]. 中国实验方剂学杂志,2017,23(13):41−47. [Ye Q Q, Du B J, Zhang P G, et al. Relations between soil factors and active ingredient content of Fritillariae Pallidiflorae Bulbus in Xinjiang[J]. Chinese Journal of Experimental Traditional Medical Formulae,2017,23(13):41−47.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return