LI Deyan, HE Hongzao. Optimization of Enzymatic Hydrolysis Conditions for the Production of Crisp Plum Juice by Response Surface Methodology [J]. Science and Technology of Food Industry, 2021, 42(14): 212−218. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010123.
Citation: LI Deyan, HE Hongzao. Optimization of Enzymatic Hydrolysis Conditions for the Production of Crisp Plum Juice by Response Surface Methodology [J]. Science and Technology of Food Industry, 2021, 42(14): 212−218. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010123.

Optimization of Enzymatic Hydrolysis Conditions for the Production of Crisp Plum Juice by Response Surface Methodology

More Information
  • Received Date: January 17, 2021
  • Available Online: May 23, 2021
  • Objective: To investigate the optimum enzymolysis extraction process conditions of plum fruit, and to provide theoretical bases fordeep processing andutilizationof itsresources. Method: The juice yield was used as an indicator. On the basis of single-factor experiments, response surface methodology (RSM) was employed to optimize the enzymatic hydrolysis pretreatment conditions for extracting fruit juice from crisp plum with methods of adding enzymes, including pectinases, cellulase and complex enzyme consisted of pectinases and cellulase. Result: The results suggested that the extraction parameters in the order of significance were enzymolysis temperature, enzyme concentration, enzymolysis pH, and enzymolysis time by response surface analysis. The optimum conditions of enzymolysis with pectinases were pectinases concentration 0.45 g/L, enzymolysis temperature 38 ℃, enzymolysis pH3.8 and enzymolysis time 72 min, in which the average juice yield of crisp plum was 78.63%. The optimum conditions of enzymolysis with cellulase were cellulase concentration 0.55 g/L, enzymolysis temperature 41 ℃, enzymolysis pH4.2 and enzymolysis time 105 min, in which the average juice yield of crisp plum was 74.33%. The optimum conditions of enzymolysis with complex enzyme were pectinases concentration 0.45 g/L, cellulase concentration 0.55 g/L, enzymolysis temperature 41 ℃, enzymolysis pH4.0 and enzymolysis time 87 min, in which the average juice yield of crisp plum was 81.51%. Conclusion: In the extract process of crisp plum juice, juice yields all increased when extracting juice, by adding pectinases, cellulase or complex enzyme consisted of pectinases and cellulose on the corresponding optimal conditions of enzymatic hydrolysis. The study provides technical references for the product development of Guizhou plum fruit.
  • [1]
    罗福贤. 黔南山区李种质资源果实形态分类及开发利用[J]. 贵州农业科学,1996,24(3):39−42.
    [2]
    王莹, 向准, 贺红早, 等. 贵州酥李果酒的酿造方法研究[J]. 酿酒科技,2014(9):75−76, 80.
    [3]
    李德燕, 贺红早. 不同澄清剂对酥李果酒澄清效果的影响[J]. 食品研究与开发,2020,41(15):62−67. doi: 10.12161/j.issn.1005-6521.2020.15.012
    [4]
    Sharma H P, Patel H, Sugandha. Enzymatic added extraction and clarification of fruit juices-a review[J]. Critical Reviews in Food Science and Nutrition,2017,57(6):1215−1227. doi: 10.1080/10408398.2014.977434
    [5]
    Ribeiro D S, Henrique S M B, OliveiraLS, et al. Enzymes in juice processing: A review[J]. International Journal of Food Science and Technology,2010,45(4):635−641. doi: 10.1111/j.1365-2621.2010.02177.x
    [6]
    Kaur S, Sarkar B C, Sharma H K, et al. Optimization of enzymatic hydrolysis pretreatment conditions for enhanced juice recovery from guava fruit using response surface methodology[J]. Food and Bioprocess Technology,2009,2(1):96−100. doi: 10.1007/s11947-008-0119-1
    [7]
    Khan M, Nakkeeran E, Umesh-Kumar S. Potential application of pectinase in developing functional foods[J]. Annual Review of Food Science and Technology,2013,4:21−34. doi: 10.1146/annurev-food-030212-182525
    [8]
    郝心, 卢晓明, 乔旭光. 响应面优化酶法提取沾化冬枣汁的工艺研究[J]. 食品研究与开发,2020,41(3):138−144.
    [9]
    王静. 枣浓缩清汁加工工艺研究[D]. 郑州: 河南工业大学, 2016.
    [10]
    贾东升, 李荣乔, 谢晓亮, 等. 响应面法优化果胶酶澄清酸枣汁工艺的研究[J]. 食品研究与开发,2016,37(10):91−95. doi: 10.3969/j.issn.1005-6521.2016.10.023
    [11]
    马艳弘, 田丽敏, 孙小华, 等. 无花果酶解制汁工艺优化及抗氧化活性[J]. 食品研究与开发,2019,40(1):111−117. doi: 10.3969/j.issn.1005-6521.2019.01.019
    [12]
    孙小华, 马艳弘, 崔晋, 等. 响应面法优化无花果果汁酶解提取工艺研究[J]. 西北农林科技大学学报(自然科学版),2018,46(12):58−64, 73.
    [13]
    Handique J, Bora S J, Sit N. Optimization of banana juice extraction using combination of enzymes[J]. Journal Food Science and Technology-Mtsore,2019,56(8):3732−3743. doi: 10.1007/s13197-019-03845-z
    [14]
    Bora S J, Handique J, Sit N. Effect of ultrasound and enzymatic pre-treatment on yield and properties of banana[J]. Ultrasonics Sonochemistry,2017,37(2):445−451.
    [15]
    任曼妮, 姜辰昊, 彭中兰, 等. 果胶酶处理对花红清汁出汁率和澄清度的影响[J]. 食品工业,2019,40(6):47−50.
    [16]
    王瑾, 冯作山, 洪梅玲, 等. 响应面法优化复合酶解提取赤霞珠葡萄汁工艺[J]. 食品工业科技,2019,40(3):141−146, 152.
    [17]
    Dal Magro L, Silveira V C C, de Menezes E W, et al. Magnetic biocatalysts of pectinase and cellulase: Synthesis and characterization of two preparations for application in grape juice clarification[J]. International Journal of Biological Macromolecules,2018,115(8):35−44.
    [18]
    Dal Magro L, Dalagnol L M G, Manfroi V, et al. Synergistic effects of pectinex ultra clear and lallzyme beta on yield and bioactive compounds extraction of Concord grape juice[J]. LWT-Food Scienceand Technology,2016,72(10):157−165.
    [19]
    姜守军, 周广麒. 果胶酶提高葡萄出汁率及色泽的影响[J]. 食品与机械,2007(3):155−156, 159. doi: 10.3969/j.issn.1003-5788.2007.03.046
    [20]
    吴定, 孙嘉文, 黄卉卉, 等. 固定化果胶酶提高苹果出汁率的研究[J]. 食品科学,2012,33(16):40−44.
    [21]
    黄峰华, 于泽源, 李兴国. 寒地特色中小苹果果汁加工酶处理技术研究[J]. 食品工业科技,2011,32(3):277−279, 284.
    [22]
    方亚叶, 付五兵, 唐鹏, 等. 酶制剂在苹果液化过程中的应用研究[J]. 食品科技,2007(2):190−192. doi: 10.3969/j.issn.1005-9989.2007.02.052
    [23]
    李小惠. 金刺梨发酵酒工艺研究[D]. 重庆: 西南大学, 2017.
    [24]
    张丹. 无籽刺梨酶法制汁工艺及果粉制备研究[D]. 重庆: 西南大学, 2017.
    [25]
    岳珍珍. 野刺梨果汁加工技术研究[D]. 杨凌: 西北农林科技大学, 2016.
    [26]
    马建勇, 李梦丽, 李春美. 两种不同成熟度树莓营养成分分析及果胶酶对树莓出汁率的影响[J]. 食品工业科技,2017,38(6):213−216, 228.
    [27]
    贺可, 谷瑞瑞, 吴小平, 等. 响应面分析法优化新鲜树莓浆酶解工艺[J]. 保鲜与加工,2017,17(5):52−56. doi: 10.3969/j.issn.1009-6221.2017.05.010
    [28]
    孙旸, 孙春玉, 马骥, 等. 果胶酶提高软枣猕猴桃出汁率研究[J]. 中国酿造,2011(9):115−117. doi: 10.3969/j.issn.0254-5071.2011.09.031
    [29]
    姜文文, 姜爱丽, 田密霞, 等. 果胶酶处理对软枣猕猴桃出汁率的影响[J]. 保鲜与加工,2008(4):48−50. doi: 10.3969/j.issn.1009-6221.2008.04.015
    [30]
    雷昌贵, 孟宇竹, 蔡花真, 等. 果胶酶对布朗李汁澄清效果的影响[J]. 中国食品添加剂,2009,20(3):175−179. doi: 10.3969/j.issn.1006-2513.2009.03.037
  • Cited by

    Periodical cited type(4)

    1. 马琳,祁琪,李雅轩,赵昕. 甜蜜素对果蝇繁殖生长及运动能力的影响. 首都师范大学学报(自然科学版). 2024(04): 36-41 .
    2. 严静,薛秋艳,王旸,陈汶意,谢诗晴,江津津,黎攀,杜冰. 发酵米荞对高脂肪秀丽隐杆线虫的降脂及抗氧化作用. 食品工业科技. 2023(06): 8-15 . 本站查看
    3. 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用. 山东大学学报(医学版). 2023(07): 19-26 .
    4. 文明明,毕洁,贺艳萍,戴煌,张威,舒在习,肖安红. 高糖饮食抑制后代雄性果蝇寿命和育性及其作用机制. 现代食品科技. 2022(10): 9-18 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (307) PDF downloads (22) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return