MIAO Xinyue, ZHU Libin, ZHU Dan, et al. Optimization of Ultrasonic-assisted Extraction Protein from the Physalis pubescens L. Seeds[J]. Science and Technology of Food Industry, 2021, 42(19): 190−196. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120293.
Citation: MIAO Xinyue, ZHU Libin, ZHU Dan, et al. Optimization of Ultrasonic-assisted Extraction Protein from the Physalis pubescens L. Seeds[J]. Science and Technology of Food Industry, 2021, 42(19): 190−196. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120293.

Optimization of Ultrasonic-assisted Extraction Protein from the Physalis pubescens L. Seeds

More Information
  • Received Date: January 03, 2021
  • Available Online: July 21, 2021
  • The Physalis pubescens L. seeds defatted as materials, the extraction rate of protein as index, on the basis of single factor experiments, such as ultrasonic power, extraction temperature, extraction time and extraction solution pH, the optimal extraction conditions were optimized by orthogonal experiment, and the solubility, emulsibility and foamability properties of the protein were analyzed. The extraction conditions of protein from Physalis pubescens L. seeds by ultrasonic-assisted alkali-soluble acid-precipitation method were optimized by orthogonal experiment. The solubility, emulsibility and foamability of the protein were analyzed. The results showed that the influence order of various factors on the extraction rate of protein was as follows: Extraction temperature>ultrasonic power>extraction solution pH>extraction time. When solid-liquid ratio was 1:15(g/mL), the optimum conditions of protein from Physalis pubescens L. seeds by ultrasound-assisted treatment were as follows: The extraction temperature 50 ℃, the extraction power 300 W, the pH of the extract solution 9.0, and the extraction time 50 min. Under this condition, the extraction rate of protein from Physalis pubescens L. seeds could reach 90.45%±0.16%. The protein from Physalis pubescens L. seeds extracted by ultrasonic-assisted method had the best solubility and emulsification when pH was 10.0, with the nitrogen solubility index (NSI) of 58.32% and the emulsification ability of 68.94 m2/g, and the foaming characteristic of the protein was the best at pH7.0, which was 43%. The extraction process can efficiently extract the protein from Physalis pubescens L. seeds, which provides a theoretical basis for the further application of the protein.
  • [1]
    杨炳友, 李晓毛, 刘艳, 等. 毛酸浆的研究进展[J]. 中草药,2017,48(14):2979−2988. [Yang B Y, Li X M, Liu Y, et al. Research status and development trend of Physalis pubescens[J]. Chinese Traditional and Herbal Drugs,2017,48(14):2979−2988.
    [2]
    王艺, 张庆钢, 高蕊笑, 等. 毛酸浆的研究进展[J]. 农产品加工,2020,4(8):72−76.81. [Wang Y, Zhang Q G, Gao R X, et al. Research status and development trend of Physalis pubescens[J]. Farm Products Processing,2020,4(8):72−76.81.
    [3]
    Felicien M K, Justin N K, Pius T M, et al. Assessment of antidiabetic activity and acute toxicity of leaf extracts from Physalis peruviana L. in guinea-pig[J]. Asian Pac J Trop Biomed,2013,11(3):841−846.
    [4]
    Hassan A I, Ghoneim M A. A possible inhibitory Effect of physalis (physalis pubescens L.) on diabetes in male rats[J]. World Applied Sciences Journal. 2013, 21(5): 681-688.
    [5]
    Chen L X, Gui Y, Qiu F, et al. Physapubescin selectively induces apoptosis in VHL-null renal cell carcinoma cells through down-regulation of HIF-2α and inhibits tumor growth[J]. Scientific reports,2016,6(9):32582.
    [6]
    Fermandes A C F, Souza D, Cristina A, et al. Sensorial, antioxidant and antimicrobial evaluation of vinegars from surpluses of physalis (Physalis pubescens L.) and red pitahaya (Hylocereus monacanthus)[J]. Journal of the Science of Food and Agriculture,2019,99:2267−2274. doi: 10.1002/jsfa.9422
    [7]
    Zeng W J, Wang Q Q, Chen L F, et al. Anticancer effect of PP31J isolated from Physalis pubescens L. in human cervical carcinoma cells[J]. American journal of Translational Research,2017,9(5):2466−2472.
    [8]
    Chen X Y, Li X, Zhang X B, et al. Antihyperglycemic and antihyperlipidemic activities of a polysaccharide from Physalis pubescens L. in streptozotocin (STZ)-induced diabetic mice[J]. Food & Function,2019,10(8):4868−4876.
    [9]
    陆占国, 郑国臣, 余善鸣. 超临界CO2流体萃取的酸浆籽油的成分分析[J]. 食品与机械,2007,23(2):88−89, 113. [Lu Z G, Zheng G C, Yu S M. Composition analysis of groundcherry seed oil by supercritical CO2 extraction[J]. Food & Machinery,2007,23(2):88−89, 113. doi: 10.3969/j.issn.1003-5788.2007.02.025
    [10]
    王晶晶, 陈慧, 姚志国, 等. 毛酸浆冻果果酒的制备及其发酵过程中的气味监测[J]. 食品工业科技,2017,38(2):182−186. [Wang J J, Chen H, Yao Z G, et al. Preparation of frozen fruits wine from Physalis pubescens L. and its odor monitoring during fermentation[J]. Science and Technology of Food Industry,2017,38(2):182−186.
    [11]
    牛春艳, 王海. 超声波提取毛酸浆总黄酮研究[J]. 吉林农业科技学院学报,2017,26(2):12−15. [Niu C Y, Wang H. Study on the extraction of total flavonoids from Physalis pubescens by ultrasonic wave[J]. Journal of Jilin Agricultural Science and Technology University,2017,26(2):12−15. doi: 10.3969/j.issn.1674-7852.2017.02.004
    [12]
    朱丹, 朱立斌, 苗欣月, 等. 不同乳酸菌在毛酸浆发酵中的特性研究[J]. 中国酿造,2020,39(5):141−146. [Zhu D, Zhu L B, Miao X Y, et al. Characteristics of different lactic acid bacteria in Physalis pubescens fermentation[J]. China Brewing,2020,39(5):141−146. doi: 10.11882/j.issn.0254-5071.2020.05.027
    [13]
    Zhao X L, Liu H C, Wu Y J, et al. Intervention with the crude polysaccharides of Physalis pubescens L. mitigates colitis by preventing oxidative damage, aberrant immune responses, and dysbacteriosis[J]. Journal of Food Science,2020,85(8):2596−2607. doi: 10.1111/1750-3841.15330
    [14]
    郝晓磊, 张姣姣, 李喜宏, 等. 微波对毛酸浆籽油提取效率的影响及其脂肪酸分析[J]. 保鲜与加工,2017,17(1):99−103. [Hao X L, Zhang J J, Li X H, et al. Effect of microwave on the extraction efficiency of Physalis pubescens L. seed oil and its fatty acid analysis[J]. Storage and Process,2017,17(1):99−103.
    [15]
    张舵. 碱提酸沉法提取红菇娘籽蛋白的研究[J]. 轻工科技,2016,32(11):17−18. [Zhang T. Extraction of protein from Physalis alkekengi L. seed by alkali extraction and acid precipitation method[J]. Light Industry Science and Technology,2016,32(11):17−18.
    [16]
    罗发美, 谭文翰, 刀仕强, 等. 茶渣中蛋白质提取方法研究进展[J]. 食品安全质量检测学报,2020,11(13):4291−4297. [Luo F M, Tan W H, Dao S Q, et al. Research progress of protein extraction method from tea residue[J]. Journal of Food Safety & Quality,2020,11(13):4291−4297.
    [17]
    弓志青, 王延圣, 张璐, 等. 超声波辅助提取香菇柄蛋白工艺优化研究[J]. 山东农业科学,2017,49(11):138−141. [Gong Z Q, Wang Y S, Zhang L, et al. Process optimization of ultrasonic-assisted extraction of proteins from roots of lentinus edodes[J]. Shandong Agricultural Sciences,2017,49(11):138−141.
    [18]
    胡尔西丹·伊麻木, 李亚童, 乔丽洁, 等. 响应面法优选芜菁中蛋白质的提取工艺及蛋白质抗氧化活性的评估[J]. 食品安全质量检测学报,2020,11(13):4482−4488. [Huerxidan Y M M, Li Y T, Qiao L J, et al. Optimization of the extraction process of Brassica rapa L. protein by response surface methodology and evaluation of its antioxidant activity[J]. Journal of Food Safety & Quality,2020,11(13):4482−4488.
    [19]
    唐诗琦, 刘小玲, 林莹, 等. 响应面法优化辣木籽蛋白质提取工艺的研究[J]. 粮食与饲料工业,2020,43(2):34−41. [Tang S Q, Liu X L, Lin Y, et al. Study on optimization of protein extraction process of Moringa oleifera seed by response surface methodology[J]. Cereal & Feed Industry,2020,43(2):34−41.
    [20]
    马梦婷, 王艺静, 王青林, 等. 超声波辅助碱法提取棉籽蛋白工艺条件的优化[J]. 食品工业,2017,38(8):66−71. [Ma M T, Wang Y J, Wang Q L, et al. Optimization of process condition for ultrasonic-assisted alkaline extraction technology of protein from cottonseed[J]. The Food Industry,2017,38(8):66−71.
    [21]
    李逸鹤, 程婷婷. 响应面法优化超声辅助提取菜籽蛋白工艺参数的研究[J]. 粮食科技与经济,2020,45(7):132−134. [Li Y H, Cheng T T. Study on optimization of ultrasonic-assisted extraction process parameters of rapeseed protein by response surface methodology[J]. Grain Science and Technology and Economy,2020,45(7):132−134.
    [22]
    冯磊. 茶叶籽蛋白提取及其酶解物抗氧化作用研究[D]. 吉首: 吉首大学, 2013.

    Feng L. Extraction of tea seeds protein and antioxidant activity of its hydrolysates[D]. Jishou: Jishou University, 2013.
    [23]
    中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009.5-2016 食品安全国家标准 食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the People's Republic of China, China Food and Drug Administration. GB/T 5009.5-2016 National food safety standard-Determination of protein in food[S]. Beijing: China Standard Press, 2016.
    [24]
    许英一, 王宇, 林巍. 酶法提取燕麦蛋白理化性质研究[J]. 食品工业,2018,39(7):72−75. [Xu Y Y, Wang Y, Lin W, et al. Study on the physicochemical properties of oat protein by enzymatic method[J]. The Food Industry,2018,39(7):72−75.
    [25]
    李永恒, 田双起, 赵仁勇, 等. 微波辅助碱法提取麦胚蛋白及其功能特性的研究[J]. 河南工业大学学报(自然科学版),2018,39(4):14−19. [Li Y H, Tian S Q, Zhao R Y, et al. Microwave-assisted alkaline extraction of wheat germ protein and its functional properties[J]. Journal of Henan University of Technology(Natural Science Edition),2018,39(4):14−19.
    [26]
    李超楠, 鹿保鑫, 冯玉超, 等. 超声波辅助提取碎米蛋白及其功能特性研究[J]. 食品研究与开发,2017,38(15):58−63. [Li C N, Lu B X, Feng Y C, et al. Study on the ultrasonic-assisted extraction of broken rice protein and its functional properties[J]. Food Research and Development,2017,38(15):58−63. doi: 10.3969/j.issn.1005-6521.2017.15.013
    [27]
    尚书凤, 陈志远, 许兰, 等. 大米抛光粉蛋白提取工艺的优化[J]. 饲料研究,2020,43(7):77−80. [Shang S F, Chen Z Y, Xu L, et al. Optimization of technology for protein extraction of rice polishing powders[J]. Feed Research,2020,43(7):77−80.
    [28]
    邹烨, 蔡盼盼, 王立, 等. 超声辅助酶法提取中华鳖裙边胶原蛋白及其热稳定性能[J]. 食品科学,2018,39(2):254−259. [Zou Y, Cai P P, Wang L, et al. Ultrasonic-assisted enzymatic extraction and thermal stability of collagen from soft-shelled turtle calipash[J]. Food Science,2018,39(2):254−259. doi: 10.7506/spkx1002-6630-201802040
    [29]
    Sidmara B, Karine Z, Neura B, et al. Implication of Microwaves on the Extraction Process of Rice Bran Protein[J]. Brazilian Journal of Chemical. 2019, 36(4): 1653−1665.
    [30]
    伊莉, 吴锁柱, 孟琼宇, 等. 响应面优化胡麻粕蛋白提取工艺及其功能性质研究[J]. 食品研究与开发,2019,40(18):52−57. [Yi L, Wu S Z, Meng Q Y, et al. Optimization of protein extraction from flaxseed flake using response surface methodology and study on its fuctional property[J]. Food Research and Development,2019,40(18):52−57. doi: 10.12161/j.issn.1005-6521.2019.18.009
    [31]
    Linares E, Larre C, Lemeste M, et a1. Emulsifying and foaming properties of gluten hydrolysates with an increasing degree of hydrolysis: Role of soluble and insoluble fractions[J]. Cereal Chemistry,2000,77(4):414−420. doi: 10.1094/CCHEM.2000.77.4.414
  • Cited by

    Periodical cited type(2)

    1. 肖佳豪,张群,潘兆平,李涛,孙恬,江盛宇,李绮丽,付复华. 低温超微粉碎对茶枝柑果肉粉理化性质和功能特性的影响. 食品科学. 2024(20): 220-231 .
    2. 王鑫,毕海鑫,修伟业,遇世友,韩春然. 发酵蓝靛果果汁的工艺优化及香气成分分析. 食品工业科技. 2023(13): 176-185 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (211) PDF downloads (25) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return