PENG Yun, LI Wenjin, TANG Manli, et al. Study on Fungistasis of Marine Bacteria BMF04 and Removal Effect on Toxin[J]. Science and Technology of Food Industry, 2021, 42(14): 127−132. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120037.
Citation: PENG Yun, LI Wenjin, TANG Manli, et al. Study on Fungistasis of Marine Bacteria BMF04 and Removal Effect on Toxin[J]. Science and Technology of Food Industry, 2021, 42(14): 127−132. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120037.

Study on Fungistasis of Marine Bacteria BMF04 and Removal Effect on Toxin

More Information
  • Received Date: December 03, 2020
  • Available Online: May 24, 2021
  • In order to clarify the inhibitory effects, toxin removal capacity and toxin degradation mechanism of marine bacteria BMF04. Firstly, the inhibitory effects of BMF04 strain and its aseptic fermentation broth on Fusarium graminearum and Fusarium nivale (Fr) Ces. were determined by the plate-stand method; Secondly, the removal of ZEN by live strain, aseptic fermentation broth, cell wall suspension and intracellular fluid, as well as the effect of hightemperature and protease treatment on the removal of ZEN by BMF04 strain were determined by toxicity plate method and HPLC method, to clarify the mechanism of its action of removing toxin. The results showed that BMF04 had good inhibitory effect on F. graminearum and F. nivale (Fr) Ces.. The strain BMF04 strain had a strong ability to remove Zen toxin, and when the concentration was 15 µg/mL, the live strain, the aseptic fermentation liquid, the cell wall suspension and the intracellular liquid had strong removal effect on ZEN, the removal rates were 98.92%±0.07%, 98.70%±0.19%, 97.85%±0.07% and 98.54%±0.10%, respectively. After high temperature inactivation, the removal rate of ZEN was reduced to 60.32%±0.21% and 2.09%±1.15%. After treatment with trypsin, pepsin and proteinase K, the removal rates decreased to 3.52%±0.77%, 0.50%±0.39% and 0.18%± 0.12%, indicating that high temperature inactivation and protease had significant effects on the removal of ZEN from BMF04 fermentation broth. Therefore, the removal of ZEN by the strain had both the degradation of extracellular protein and the adsorption of cell wall. The results of this study provided a new strain resource for the biological removal of ZEN toxin from contaminated food and feed, and also provided a theoretical basis for the biodegradation of ZEN toxin.
  • [1]
    裴世春, 李妍, 高建伟, 等. 采收期谷物中真菌毒素产毒菌的筛选鉴定[J]. 食品科学,2018,39(10):312−317. doi: 10.7506/spkx1002-6630-201810047
    [2]
    周红姿, 周方园, 赵晓燕. 小麦赤霉病生防菌的筛选及其田间防效研究[J]. 中国农业科技导报,2020,22(1):67−77.
    [3]
    史建荣, 刘馨, 仇剑波. 小麦中镰刀菌毒素脱氧雪腐镰刀菌烯醇污染现状与防控研究进展[J]. 中国农业科学,2014,47(18):3641−3654. doi: 10.3864/j.issn.0578-1752.2014.18.012
    [4]
    刘盼, 蔡俊, 廖兆民, 等. 降解玉米赤霉烯酮菌株的鉴定及其发酵条件优化[J]. 食品工业科技,2018,39(21):119−123.
    [5]
    雷元培, 周建川, 王利通, 等. 2018年中国饲料原料及配合饲料中霉菌毒素污染调查报告[J]. 饲料工业,2020,41(10):60−64.
    [6]
    陈心仪. 2009-2010年中国部分省市饲料原料及配合饲料的霉菌毒素污染概况[J]. 浙江畜牧兽医,2011,36(2):7−10. doi: 10.3969/j.issn.1005-7307.2011.02.005
    [7]
    周建川, 雷元培, 王利通, 等. 2017年中国饲料原料及配合饲料中霉菌毒素污染调查报告[J]. 饲料工业,2018,39(11):52−56.
    [8]
    李安平, 朱连勤, 陈甫, 等. 2017年山东地区鸡饲料及原料中AFB-1、DON和ZEN污染情况调查[J]. 中国家禽,2018,40(10):69−72.
    [9]
    宋丹, 李蕴玉, 杨彩然, 等. 河北省蛋鸡配合饲料及原料中霉菌毒素的污染情况[J]. 中国家禽,2019,41(10):78−80.
    [10]
    Volko A, Karlovsky P. Biological detoxification of fungal toxins and its use in plant breeding, feed and food production[J]. Natural Toxins,1998(7):1−23.
    [11]
    孙玲玉. 枯草芽孢杆菌泰山株的分离鉴定及其对黄曲霉毒素的降解作用研究[D]. 泰安: 山东农业大学, 2014.
    [12]
    Yunus A W, Razzazi-fazeli E, Bohm J. Aflatoxin B1 in affecting broiler’s performance, immunity, and gastrointestinal tract: A review of history and contemporary issues[J]. Toxins,2011,3(6):566−590. doi: 10.3390/toxins3060566
    [13]
    张俊楠, 王金全, 杨凡, 等. 饲料霉菌毒素生物降解研究进展[J]. 饲料工业,2019,40(21):51−58.
    [14]
    Mannon J, Johnaon E. Fungi down on the farm[J]. New Scientist,1985,105:12−16.
    [15]
    Kriszt R, Krifaton C, Szoboszlay S, et al. A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain[J]. Plos One,2012,7(9):e43608. doi: 10.1371/journal.pone.0043608
    [16]
    龙淼, 何润霞, 刘义, 等. 玉米赤霉烯酮降解菌的分离与鉴定[J]. 畜牧与兽医,2015,47(8):34−38.
    [17]
    Cho K J, Kang J S, Cho W T, et al. In vitro degradation of zearalenone by Bacillus subtilis[J]. Biotechnology Letters,2010,32(12):1921−1924. doi: 10.1007/s10529-010-0373-y
    [18]
    耿海荣, 张晨曦, 赵月菊, 等. 一株高效降解玉米赤霉烯酮的耐酸耐高温枯草芽孢杆菌的研究[J]. 核农学报,2019,33(7):1399−1407. doi: 10.11869/j.issn.100-8551.2019.07.1399
    [19]
    Harkai P, Szabṓ I, Cserhati M, et al. Biodegradation of aflatoxin B1 and zearalenone by Streptomyces sp. collection[J]. International Biodeterioration & Biodegradation,2016,108:48−56.
    [20]
    Saumuel M S, Sivaramakrishna A, Mehta A. Degradation and detoxification of aflatoxin B1 by Pseudomonas putida[J]. International Biodeterioration& Biodegradation,2014,86:202−209.
    [21]
    董曼佳, 杨其亚, 孙伟, 等. 拮抗酵母菌控制玉米赤霉烯酮的研究进展[J]. 食品科学,2016,37(1):230−234. doi: 10.7506/spkx1002-6630-201601040
    [22]
    Bakutis B, Baliukoniene V, Paṥkevicius A. Use of biological method for detoxification of mycotoxins[J]. Botanica Lithuanica,2005,7:123−129.
    [23]
    王亚楠, 陈莹莹, 吴玉洪, 等. 甲基营养型芽孢杆菌对黄瓜促生作用及其机理研究[J]. 北方园艺,2020(12):1−7.
    [24]
    李欢, 曹雪梅, 陈茹, 等. 高效拮抗链孢霉和绿色木霉海洋细菌的筛选及鉴定[J]. 南方农业学报,2019,50(7):1519−1526. doi: 10.3969/j.issn.2095-1191.2019.07.16
    [25]
    胡晓丹, 王建伟, 李孝敬. 赤霉病菌拮抗菌Bacillus subtilis AF0907抗菌物质研究[J]. 中国生物防治学报,2015,31(3):378−385.
    [26]
    潘丽婷. 玉米赤霉烯酮降解菌的分离鉴定、降解特性及机理研究[D]. 南京: 南京农业大学, 2018.
    [27]
    何润霞. 玉米赤霉烯酮降解菌的筛选鉴定及降解特性研究[D]. 沈阳: 沈阳农业大学, 2016.
    [28]
    张倩. 玉米赤霉烯酮脱毒菌株的筛选及Fosmid文库构建[D]. 华南理工大学, 2016.
    [29]
    张倩, 熊犍, 赵晨, 等. 玉米赤霉烯酮脱毒菌株的筛选及脱毒机理初探[J]. 粮油食品科技,2016,24(6):76−81. doi: 10.3969/j.issn.1007-7561.2016.06.017
    [30]
    骆翼. 玉米赤霉烯酮的微生物脱毒研究[D]. 上海: 上海交通大学, 2014.
    [31]
    Yi P J, Pai C K, Liu J R. Isolation and characterization of a Bacillus licheniformis strain capable of degrading zearalenone[J]. World Journal of Microbiology and Biotechnology,2011,27:1035−1043. doi: 10.1007/s11274-010-0548-7
    [32]
    谭辉. 牛瘤胃液中玉米赤霉烯酮降解菌的分离、鉴定及降解特性研究[D]. 雅安: 四川农业大学, 2014.
    [33]
    雷元培. ANSB01G菌对玉米赤霉烯酮的降解机制及其动物试验效果研究[D]. 北京: 中国农业大学, 2014.
    [34]
    张晨曦, Yawa M E F, 赵月菊, 等. 解淀粉芽孢杆菌 NS2 降解玉米赤霉烯酮的研究[J]. 核农学报,2020,34(7):1507−1517. doi: 10.11869/j.issn.100-8551.2020.07.1507
    [35]
    王国兵. 一株高效降解玉米赤霉烯酮细菌的研究[D]. 北京: 北京化工大学, 2015.
    [36]
    Xu J H, Wang H, Zhu Z, et al. Isolation and characterization of Bacillus amyloliquefaciens ZDS-1: Exploring the degradation of zearalenone by Bacillus spp.[J]. Food Control,2016,68:244−250. doi: 10.1016/j.foodcont.2016.03.030
    [37]
    唐彧, 张琼琼, 郭永鹏, 等. 一株同时降解玉米赤霉烯酮和黄曲霉毒素B1的谷氨酸棒状杆菌及其降解特性研究[J]. 饲料工业,2019,40(20):34−39.
  • Cited by

    Periodical cited type(3)

    1. 武若楠,周莉,刘守德,潘渝,黄芳,熊圆圆,万俊,曾凡强,伍淼,彭依凡,倪浩翔,胡国元,刘华梅. 解淀粉芽孢杆菌BSK532的发酵条件优化及抑菌活性研究. 化学与生物工程. 2023(03): 36-43 .
    2. 周鑫蔚,丁皓天,董秀金,徐一力,刘毅,吴冰,陈香凝,丁祝进,马桂珍,程汉良,许建和. 芽孢杆菌BMF03对摄食玉米赤霉烯酮污染饲料鲫的保护效应. 水产学杂志. 2023(04): 46-53+68 .
    3. 官佳松,卢天梅,邹承武,蒙姣荣,马仲辉,苏志维. 海洋黏细菌防治甘蔗梢腐病的筛选评价. 南方农业学报. 2023(11): 3265-3276 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (276) PDF downloads (13) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return