XUE Gang, HE Yi, LI Xiaobai, et al. Ultrasound-assisted Sulfuric Acid Hydrolysis Method for Preparation and Characterization of Nanocellulose from Ginkgo Nut Shell [J]. Science and Technology of Food Industry, 2021, 42(14): 204−211. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120006.
Citation: XUE Gang, HE Yi, LI Xiaobai, et al. Ultrasound-assisted Sulfuric Acid Hydrolysis Method for Preparation and Characterization of Nanocellulose from Ginkgo Nut Shell [J]. Science and Technology of Food Industry, 2021, 42(14): 204−211. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120006.

Ultrasound-assisted Sulfuric Acid Hydrolysis Method for Preparation and Characterization of Nanocellulose from Ginkgo Nut Shell

More Information
  • Received Date: December 01, 2020
  • Available Online: May 18, 2021
  • In order to make full use of the by-products of industrial production of ginkgo, this study used ginkgo nut shell as raw materials and adopt ultrasonic-assisted sulfuric acid hydrolysis to prepare ginkgo nut shell nanocrystalline cellulose (nanocrystalline cellulose isolated from ginkgo nut shell, NCC-GNS). The effects of three factors (e.g. sulfuric acid mass fraction, reaction temperature, reaction time) on nanocellulose yield were investigated by single-factor tests, and orthogonal experiments were used to optimize them to obtain the best preparation conditions for NCC-GNS. Taking nanocrystalline cellulose (nanocrystalline cellulose, NCC) prepared by conventional sulfuric acid hydrolysis (without ultrasound assistance) as a control, analyzed the impact of ultrasound-assisted processing on NCC-GNS through scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential and dynamic light scattering (DLS), X-ray diffraction (x-ray diffraction, XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), etc. The results showed that the optimal conditions for preparing NCC-GNS were sulfuric acid mass fraction of 48%, reaction temperature of 60 °C, reaction time of 25 min under the condition of ultrasonic power of 120 W. The NCC-GNS yield under optimal conditions was 37.01%. The NCC-GNS prepared by ultrasonic-assisted and conventional sulfuric acid hydrolysis methods were long rods with no significant difference in size. The length and diameter of the NCC-GNS prepared by ultrasonic-assisted were relatively concentrated with a length of 80~180 nm and a diameter of 3.5~5.5 nm. The crystallinity of NCC-GNS prepared by ultrasound was 88%, which was higher than 75% of conventional sulfuric acid hydrolysis. The NCC-GNS prepared by the two methods had lower Zeta potential and good thermal stability. In summary, the yield of NCC-GNS prepared by ultrasonic-assisted sulfuric acid hydrolysis was high, and the obtained NCC-GNS had high crystallinity and good thermal stability, which was expected to have better applications in the field of biomass composite materials.
  • [1]
    Costa L A, Fonseca A F, Pereira F V, et al. Extraction and characterization of cellulose nanocrystals from corn stover[J]. Cellulose Chemistry Technology,2015,49(2):127−133.
    [2]
    Rosa M F, Medeiros E S, Maimonge J A, et al. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior[J]. Carbohydrate Polymers,2010,81(1):83−92. doi: 10.1016/j.carbpol.2010.01.059
    [3]
    Lou Zaixiang, Wang Hongxin, Li Jing, et al. Effect of simultaneous ultrasonic/microwave assisted extraction on the antioxidant and antibacterial activities of burdock leaves[J]. Journal of Medicinal Plants Research,2011,5(22):5370−5377.
    [4]
    Saha M, Eskicioglu C, Marin J. Microwave ultrasonic and chemo-mechanical pretreatments for enhancing methne potential of pulp mill wastewater treatment sludge[J]. Bioresource Technology,2011,102(17):7815−1826. doi: 10.1016/j.biortech.2011.06.053
    [5]
    Kolakovic R, Peltonen L, Laukkanen A, et al. Nanofibrillar cellulose films for controlled drug delivery[J]. European Journal of Pharmaceutics and Biopharmaceutics,2012,82(2):308−315. doi: 10.1016/j.ejpb.2012.06.011
    [6]
    Thennakoon M Udeni Gunathilake, Yern Chee Ching, Cheng Hock Chuah. Enhancement of curcumin bioavailability using nanocellulose reinforced chitosan hydrogel[J]. Polymers,2017,9(2):64.
    [7]
    郭婷, 刘雄. 纳米纤维素的改性及其在复合材料中的应用进展[J]. 食品科学,2014,35(3):285−289. doi: 10.7506/spkx1002-6630-201403056
    [8]
    张秀伶, 王稳航. 纳米纤维素研究及在食品工业中的应用前景[J]. 食品工业科技, 2016, 37(21): 377−382.
    [9]
    Wilson Pires Flauzino Neto, Hudson Alves Silvério, Noélio Oliveira Dantas, et al. Extraction and characterization of cellulose nanocrystals from agro-industrial residue-Soy hulls[J]. Industrial Crops and Products,2013,42:480−488. doi: 10.1016/j.indcrop.2012.06.041
    [10]
    Saleheen Bano, Yuvraj Singh Negi. Studies on cellulose nanocrystals isolated from groundnut shells[J]. Carbohydrate Polymers,2017,157:1041−1049. doi: 10.1016/j.carbpol.2016.10.069
    [11]
    Josh Marett, Alex Aning E, Johan Foster. The isolation of cellulose nanocrystals from pistachio shells via acid hydrolysis[J]. Industrial Crops & Products,2017,109:869−874.
    [12]
    刘潇, 董海洲, 侯汉学. 花生壳纳米纤维素的制备及其对淀粉膜性能的影响[J]. 中国粮油学报,2015,30(1):112−116.
    [13]
    陈珊珊, 陶宏江, 王亚静, 等. 葵花籽壳纳米纤维素制备工艺优化及其表征[J]. 农业工程学报,2015,31(15):302−308. doi: 10.11975/j.issn.1002-6819.2015.15.041
    [14]
    宋孝周, 吴清林, 傅峰, 等. 农作物与其剩余物制备纳米纤维素研究进展[J]. 农业机械学报,2011,42(11):106−112.
    [15]
    Yang Ni, Li Jinwei, Fan Liuping. Production of nanocellulose with different length from ginkgo seed shells and applications for oil in water Pickering emulsions[J]. International Journal of Biological Macromolecules,2020,149:617−626. doi: 10.1016/j.ijbiomac.2020.01.263
    [16]
    Mehdi Jonoobi, Reza Oladi, Yalda Davoudpour, et al. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review[J]. Cellulose,2015,22(2):935−969. doi: 10.1007/s10570-015-0551-0
    [17]
    Yang Ni, Fan Liuping, Yong Sun. Interfacial properties of cellulose nanoparticles with different lengths from ginkgo seed shells[J]. Food Hydrocolloids,2020,109:106−121.
    [18]
    李华, 孔新刚, 王俊. 秸秆饲料中纤维素、半纤维素和木质素的定量分析研究[J]. 新疆农业大学学报,2007(3):65−68. doi: 10.3969/j.issn.1007-8614.2007.03.015
    [19]
    Alfred D French, Michael Santiago Cintrón. Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index[J]. Cellulose,2013,20(1):583−588. doi: 10.1007/s10570-012-9833-y
    [20]
    Chen Wenshuai, Yu Haipeng, Liu Yixing, et al. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments[J]. Carbohydrate Polymers,2010,83(4):1804−1811.
    [21]
    Liu Haiyun, Liu Dagang, Yao Fei, et al. Fabrication and properties of transparent polymethy/methacrylate/cellulose nanocrystals composites[J]. Bioresource Technology,2010,101(14):5685−5692. doi: 10.1016/j.biortech.2010.02.045
    [22]
    Roni Marcos Dos Santos, Wilson Pires Flauzino Neto, Hudson Alves Silvério, et al. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste[J]. Industrial Crops and Products,2013,50:707−714. doi: 10.1016/j.indcrop.2013.08.049
    [23]
    Hanieh Kargarzadeh, Ishak Ahmad, Ibrahim Abdullah, et al. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers[J]. Cellulose,2012,19(3):855−866. doi: 10.1007/s10570-012-9684-6
    [24]
    陆红佳, 文红丽, 刘雄. 超声波辅助酸法制备纳米薯渣纤维素的工艺研究[J]. 中国粮油学报,2012,27(4):96−100. doi: 10.3969/j.issn.1003-0174.2012.04.020
    [25]
    Ping Lu, You-Lo Hsieh. Cellulose isolation and core-shell nanostructures of cellulose nanocrystals from chardonnay grape skins[J]. Carbohydrate Polymers,2012,87(4):2546−2553. doi: 10.1016/j.carbpol.2011.11.023
    [26]
    Ping Lu, You-Lo Hsieh. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network[J]. Carbohydrate Polymers,2010,82(2):329−336. doi: 10.1016/j.carbpol.2010.04.073
    [27]
    Araki J, Wada M, Kuga S, et al. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1998,142(1):75−82.
    [28]
    Eliangela Morais Teixeira, Ana Carolina Corrêa, Alexandra Manzoli, et al. Cellulose nanofibers from white and naturally colored cotton fibers[J]. Cellulose,2010,17(3):595−606. doi: 10.1007/s10570-010-9403-0
    [29]
    George Johnsy, Ramana K V, Bawa A S, et al. Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites[J]. International Journal of Biological Macromolecules,2011,48(1):50−57. doi: 10.1016/j.ijbiomac.2010.09.013
    [30]
    Agustin M B, Nakatsubo F, Yano H. The thermal stability of nanocellulose and its acetates with different degree of polymerization[J]. Cellulose,2016,23(1):451−464. doi: 10.1007/s10570-015-0813-x
  • Cited by

    Periodical cited type(3)

    1. 许晓东,周骥平,张琦,冯辰,朱勉顺,史宏灿. 明胶/氧化纳米纤维素高弹性模量高孔隙皮肤支架的3D打印工艺. 中国组织工程研究. 2024(03): 398-403 .
    2. 杨楠,王雷,高昕,许加超,付晓婷. 不同方法制备浒苔纳米纤维素及其性质表征. 食品工业科技. 2024(22): 169-177 . 本站查看
    3. 李昊,何传波,熊何健,魏好程,张福祥,倪辉. 超声辅助碱性过氧化氢法提取琯溪蜜柚幼果纤维素的工艺优化及结构表征. 食品工业科技. 2022(08): 249-257 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (289) PDF downloads (37) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return