QIAN Huiqin, PENG Yuan, HUANG Xiuxiu, et al. Mechanism of Anti-depression Mechanism of Akebiae Fructus Based on Network Pharmacology[J]. Science and Technology of Food Industry, 2021, 42(14): 8−15. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110295.
Citation: QIAN Huiqin, PENG Yuan, HUANG Xiuxiu, et al. Mechanism of Anti-depression Mechanism of Akebiae Fructus Based on Network Pharmacology[J]. Science and Technology of Food Industry, 2021, 42(14): 8−15. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110295.

Mechanism of Anti-depression Mechanism of Akebiae Fructus Based on Network Pharmacology

More Information
  • Received Date: December 01, 2020
  • Available Online: May 18, 2021
  • Objective: Revealing the anti-depression mechanism of Akebiae Fructus by network pharmacology technology. Methods: The active compounds and its corresponding depression-related targets of Akebiae Fructus were mined from the TCMSP, PharmMapper, Swiss TargetPrediction, and GeneCards databases. The protein-protein interactions were gained from the String database. The compound-target and PPI networks were built by Cytoscape software. The DAVID database was exploited for enrichment analysis of GO and KEGG signaling pathways for key targets. Finally, molecular docking was carried out for verification using AutoDockTools-1.5.6 software. Results: The 6 active compounds of Akebiae Fructus were identified, including calceolarioside B, stigmasterol glucoside, and oleanolic acid, etc. 8 major depression-related targets were predicted, such as EGFR, MAPK1/8, SRC, HSP90AA1, AR, etc. 16 depression-related signaling pathways were modulated, namely the prolactin signaling pathway, ErbB signaling pathway, GnRH signaling pathway, focal adhesion, etc. The results of molecular docking showed that the kernel components had good binding activity with the key targets. Conclusion: Akebiae Fructus exerted anti-depression effect through the comprehensive combination of multiple components, multiple targets and multiple pathways.
  • [1]
    Amato L, Vecchi S, Barbui C, et al. Systematic review to evaluate the efficacy, acceptability and safety of second-generation antipsychotics for the treatment of unipolar and bipolar depression[J]. Recenti Progressi in Medicina,2018,109(10):474−486.
    [2]
    Cui R. Editorial: A systematic review of depression[J]. Current Neuropharmacology,2015,13(4):480. doi: 10.2174/1570159X1304150831123535
    [3]
    Sankhi S, Marasine N R, Sankhi S, et al. Adverse drug reaction due to antidepressants among patients with depression in a private psychiatric hospital of nepal[J]. BioMed Research International,2020,2020:1−5.
    [4]
    王旭东, 乔明琦, 张樟进, 等. 中医药治疗抑郁症的研究进展[J]. 南京中医药大学学报,2016,32(1):93−96.
    [5]
    Yongli Jiang, Xuefu Zhou, Yuanrong Zheng, et al. Impact of ultrasonication/shear emulsifying/microwave-assisted enzymatic extraction on rheological, structural, and functional properties of Akebia trifoliata (Thunb.) Koidz. seed protein isolates[J]. Food Hydrocolloids,2021,112:1−10.
    [6]
    Iketani H. Native fruit tree genetic resources in Japan[J]. Breed Sci,2016,66(1):82−89. doi: 10.1270/jsbbs.66.82
    [7]
    唐成林, 杨斌, 陶光灿, 等. 八月瓜果实营养成分分析和评价[J]. 食品工业科技: 1−11[2021-02-05]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200721.1511.006.html.
    [8]
    国家药典委员会. 中国药典 一部[S]. 北京: 中国医药科技出版社, 2015: 297.
    [9]
    张磊阳, 蒋健, 贺敏, 等. 抗抑郁中药的药理研究进展[J]. 中国实验方剂学杂志,2017,23(24):224−234.
    [10]
    周丹. 预知子提取物对抑郁症大鼠海马神经可塑性相关蛋白BDNF/CREB/ Bcl-2的影响研究[J]. 药物生物技术,2019,26(02):110−113.
    [11]
    陈启洪, 李晓飞, 段灿灿, 等. 网络药理学探讨杜仲主要活性成分及药理作用机制[J]. 中药材,2018(2):432−439.
    [12]
    张锐, 张季林, 李冰涛, 等. 基于网络药理学研究栀子入血成分抗阿尔茨海默病的作用机制[J]. 中国中药杂志,2020,45(11):2601−2610.
    [13]
    Liu F, Zhao Q, Liu S, et al. Revealing the pharmacological mechanism of acorus tatarinowii in the treatment of ischemic stroke based on network pharmacology[J]. Evidence-Based Complementary and Alternative Medicine,2020,2020:1−16.
    [14]
    杨柳, 张王宁, 刘月涛, 等. 基于网络药理学的黄芪治疗肾病综合征的机制研究[J]. 中草药,2019,50(8):1828−1837. doi: 10.7501/j.issn.0253-2670.2019.08.010
    [15]
    戴璐彬, 关婉辰, 张栋, 等. 参麦饮改善糖尿病肾病的网络药理学研究及实验验证[J]. 中药药理与临床,2020,36(4):81−87.
    [16]
    Jin H G, Kim A R, Ko H J, et al. Three new lignan glycosides with IL-6 inhibitory activity from Akebia quinata[J]. Chemical & Pharmaceutical Bulletin,2014,62(3):288−293.
    [17]
    Wang J, Xu Q L, Zheng M F, et al. Bioactive 30-noroleanane triterpenes from the pericarps of Akebia trifoliata[J]. Molecules,2014,19(4):4301−4312. doi: 10.3390/molecules19044301
    [18]
    刘永玲, 谢国芳, 王威, 等. 八月瓜叶、果皮和果肉中酚类、VC含量及其抗氧化能力分析[J]. 食品研究与开发,2019,40(15):66−72. doi: 10.12161/j.issn.1005-6521.2019.15.011
    [19]
    宗 阳, 丁美林, 贾可可, 等. 基于网络药理学和分子对接法探寻达原饮治疗新型冠状病毒肺炎(COVID-19)活性化合物的研究[J]. 中草药,2020,51(4):836−844. doi: 10.7501/j.issn.0253-2670.2020.04.002
    [20]
    Phillips C. Brain-derived neurotrophic factor, depression, and physical activity: Making the neuroplastic connection[J]. Neural Plasticity,2017,2017:1−17.
    [21]
    Fajemiroye J O, Galdino P M, Florentino I F, et al. Plurality of anxiety and depression alteration mechanism by oleanolic acid[J]. Journal of Psychopharmacology, 28(10): 923-934.
    [22]
    Gürağaç Dereli F T, Ilhan M, Küpeli Akkol E. Identification of the main active antidepressant constituents in a traditional Turkish medicinal plant, Centaurea kurdica Reichardt[J]. Journal of Ethnopharmacology,2020,249:1−11.
    [23]
    Zhao D, Zheng L, Qi L, et al. Structural features and potent antidepressant effects of total sterols and β-sitosterol extracted from Sargassum horneri[J]. Marine Drugs,2016,14(7):123−130. doi: 10.3390/md14070123
    [24]
    Bortolato B, Hyphantis T N, Valpione S, et al. Depression in cancer: The many biobehavioral pathways driving tumor progression[J]. Cancer Treatment Reviews,2017,52:58−70. doi: 10.1016/j.ctrv.2016.11.004
    [25]
    Szelei A, Döme P. Cancer and depression: A concise review[J]. Orvosi Hetilap,2020,161(22):908−916. doi: 10.1556/650.2020.31759
    [26]
    McFarland D C, Jutagir D R, Rosenfeld B, et al. Depression and inflammation among epidermal growth factor receptor (EGFR) mutant nonsmall cell lung cancer patients[J]. Psychooncology,2019,28(7):1461−1469. doi: 10.1002/pon.5097
    [27]
    Xiang X, You X M, Li LQ. Expression of HSP90AA1/HSPA8 in hepatocellular carcinoma patients with depression[J]. OncoTargets and Therapy,2018,11:3013−3023. doi: 10.2147/OTT.S159432
    [28]
    Iñiguez S D, Parise L F, Lobo M K, et al. Upregulation of hippocampal extracellular signal-regulated kinase (ERK)-2 induces antidepressant-like behavior in the rat forced swim test[J]. Behavioral Neuroscience,2019,133(2):225−231. doi: 10.1037/bne0000303
    [29]
    Mohammad H, Marchisella F, Ortega-Martinez S, et al. JNK1 controls adult hippocampal neurogenesis and imposes cell-autonomous control of anxiety behaviour from the neurogenic niche[J]. Molecular Psychiatry,2018,23(2):362−374. doi: 10.1038/mp.2016.203
    [30]
    Hung Y Y, Huang Y L, Chang C, et al. Deficiency in androgen receptor aggravates the depressive-like behaviors in chronic mild stress model of depression[J]. Cells,2019,8(9):1021−1037. doi: 10.3390/cells8091021
    [31]
    Tan E C, Lim H W, Chua T E, et al. Investigation of variants in estrogen receptor genes and perinatal depression[J]. Neuropsychiatr Dis Treat,2018,14:919−925. doi: 10.2147/NDT.S160424
    [32]
    Różycka A, Słopień R, Słopień A, et al. The MAOA, COMT, MTHFR and ESR1 gene polymorphisms are associated with the risk of depression in menopausal women[J]. Maturitas,2016,84:42−54. doi: 10.1016/j.maturitas.2015.10.011
    [33]
    Duman R S, Aghajanian G K, Sanacora G, et al. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants[J]. Nature Medicine,2016,22(3):238−249.
    [34]
    Li Z, Jo J, Jia J M, et al. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization[J]. Cell,2010,141(5):859−871. doi: 10.1016/j.cell.2010.03.053
    [35]
    Tian R H, Bai Y, Li J Y, et al. Reducing PRLR expression and JAK2 activity results in an increase in BDNF expression and inhibits the apoptosis of CA3 hippocampal neurons in a chronic mild stress model of depression[J]. Brain Research,2019,1725:1−12.
    [36]
    Köhler S, Cierpinsky K, Kronenberg G, et al. The serotonergic system in the neurobiology of depression: Relevance for novel antidepressants[J]. Journal of Psychopharmacology,2016,30(1):13−22. doi: 10.1177/0269881115609072
    [37]
    Ledonne A, Mercuri N B. mGluR1-dependent long term depression in rodent midbrain dopamine neurons is regulated by neuregulin 1/ErbB signaling[J]. Frontiers in Molecular Neuroscience,2018,11:346−361. doi: 10.3389/fnmol.2018.00346
    [38]
    Gormanns P, Mueller N S, Ditzen C, et al. Phenome-transcriptome correlation unravels anxiety and depression related pathways[J]. Journal of Psychiatric Research,2011,45(7):973−979. doi: 10.1016/j.jpsychires.2010.12.010
  • Cited by

    Periodical cited type(5)

    1. 郝胜杰,杜雨欣,路尚凯,黄世杰,王辉,王冰洁,赵博,李孟伟,李欠. 基于网络药理学结合分子对接探究甘麦大枣汤治疗心脏神经官能症的作用机制. 神经药理学报. 2024(03): 36-46 .
    2. 谢玉霞,葛武鹏,李国薇,白航,张静,李香云,高秦艺,王爽爽. 驼乳乳铁蛋白DPP-IV抑制肽的筛选验证及其防治糖尿病潜在作用机制探究. 食品工业科技. 2023(06): 384-395 . 本站查看
    3. 游绍伟,詹亚梅,王文素,何典城,蓬兴柱,王学勇. 基于“脾虚宛滞”探讨慢性萎缩性胃炎“炎癌转化”与防治思路. 中国实验方剂学杂志. 2023(21): 188-195 .
    4. 刘文彬,钟景斌,王晖. 基于网络药理学探讨溪黄草治疗酒精性肝损伤的作用机制. 食品工业科技. 2022(06): 9-17 . 本站查看
    5. 叶长青,罗洪斌,詹杰,杨娇,周戈. 基于网络药理学探讨当归治疗阿尔茨海默病的机制. 湖北民族大学学报(医学版). 2022(04): 7-13 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (398) PDF downloads (65) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return