WANG Chunbo, LYU Hui, WEI Lingdong, et al. Analysis on Secondary Metabolites Difference of Guiding Yunwu Tea between Native and Introduced Varieties[J]. Science and Technology of Food Industry, 2021, 42(14): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110282a.
Citation: WANG Chunbo, LYU Hui, WEI Lingdong, et al. Analysis on Secondary Metabolites Difference of Guiding Yunwu Tea between Native and Introduced Varieties[J]. Science and Technology of Food Industry, 2021, 42(14): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110282a.

Analysis on Secondary Metabolites Difference of Guiding Yunwu Tea between Native and Introduced Varieties

More Information
  • Received Date: November 29, 2020
  • Available Online: December 06, 2020
  • In order to study the secondary metabolites difference of Guiding Yunwu tea between introduced and native varieties, ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used to qualitative and quantitative analyze the secondary metabolites between native and introduced varieties of Guiding Yunwu tea. A total of 361 metabolites were identified. Furthermore, 14 significantly different metabolites were obtained by principal component analysis (PCA) and orthogonal least squares discrimination analysis (OPLS-DA) methods, including four flavonols, four phenolic acids, three flavonoid glycosides, two catechins and one procyanidin. Pathway enrichment analysis showed that these differential metabolites were mainly distributed in phenylalanine, tyrosine and tryptophan biosynthesis, flavone and flavonol biosynthesis, and flavonoid biosynthesis pathways. In addition, the content of catechins and procyanidin B1 was higher in the native samples, while the content of flavonols and flavone glycosides were higher in the introduced samples. The results indicated that the native variety would be more suitable for green tea processing, and the introduced variety would be more suitable for white tea processing.
  • [1]
    Guo X, Long P, Meng Q, et al. An emerging strategy for evaluating the grades of Keemun black tea by combinatory liquid chromatography-Orbitrap mass spectrometry-based untargeted metabolomics and inhibition effects on alpha-glucosidase and alpha-amylase[J]. Food Chemistry,2018,246:74−81. doi: 10.1016/j.foodchem.2017.10.148
    [2]
    王叶. 不同生境茶叶产量与品质形成的光合生理生态机制[D]. 长沙: 湖南农业大学, 2018.
    [3]
    赖全康. 气候变化对茶叶生长及品质的影响分析[J]. 南方农业,2019,13(9):155−156.
    [4]
    Ji H G, Lee Y R, Lee M S, et al. Metabolic phenotyping of various tea (Camellia sinensis L.) cultivars and understanding of their intrinsic metabolism[J]. Food Chemistry,2017,233(3):321−330.
    [5]
    Dai W D, Xie D C, Lu M L, et al. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach[J]. Food Research International,2017,96:40−45. doi: 10.1016/j.foodres.2017.03.028
    [6]
    许国旺. 代谢组学-方法和应用[M]. 北京: 科学出版社, 2008: 6.
    [7]
    Wei D, Qi D D, Yang T, et al. Non-targeted analysis using ultra performance liquid chromatography-quadruple time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.)[J]. Journal of Agricultural and Food Chemistry,2015,63:9869−9878. doi: 10.1021/acs.jafc.5b03967
    [8]
    Hyung W R, Heung J Y, Ju H A, et al. Comparison of secondary metabolite changes in Camellia sinensis leaves depending on the growth stage[J]. Food Control,2017,73(8):916−921.
    [9]
    Guillarme D, Casetta C, Bicchi C, et al. High throughput qualitative analysis of polyphenols in tea samples by ultra-high pressure liquid chromatography coupled to UV and mass spectrometry detectors[J]. Journal of Chromatography A,2010,1217(44):6882−6890. doi: 10.1016/j.chroma.2010.08.060
    [10]
    王莹, 李岩, 王姝, 等. 低温胁迫下贵州云雾贡茶生长调节剂的变化[J]. 湖北农业科学,2020,59(8):99−102.
    [11]
    肖正广. 贵定云雾贡茶的发展历史和文化渊源[J]. 茶叶,2018,44(4):206−208. doi: 10.3969/j.issn.0577-8921.2018.04.009
    [12]
    Dai W, Yin P, Chen P, et al. Study of urinary steroid hormone disorders: Difference between hepatocellular carcinoma in early stage and cirrhosis[J]. Analytical and Bioanalytical Chemistry,2014,406:4325−4335. doi: 10.1007/s00216-014-7843-3
    [13]
    Dai W D, Wei C, Kong H W, et al. Effect of the traditional Chinese medicine tongxinluo on endothelial dysfunction rats studied by using urinary metabonomics based on liquid chromatography-mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2011,56:86−92. doi: 10.1016/j.jpba.2011.04.020
    [14]
    Xia J, Sinelnikov I V, Han B, et al. MetaboAnalyst 3.0-making metabolomics more meaningful[J]. Nucleic Acids Research,2015,43:W251−W257. doi: 10.1093/nar/gkv380
    [15]
    李鑫磊, 俞晓敏, 林军, 等. 基于非靶向代谢组学的白茶与绿茶、乌龙茶和红茶代谢产物特征比较[J]. 食品科学,2020,41(12):197−203. doi: 10.7506/spkx1002-6630-20190128-358
    [16]
    Gai Z G, Wang Y, Jang J, et al. The quality evaluation of tea (Camellia sinensis) varieties based on the metabolomics[J]. Hortscience,2019,54:409−415. doi: 10.21273/HORTSCI13713-18
    [17]
    Li J, Wang J Q, Yao Y F, et al. Phytochemical comparison of different tea (Camellia sinensis) cultivars and its association with sensory quality of finished tea[J]. LWT-Food Science and Technology,2020,117:108595. doi: 10.1016/j.lwt.2019.108595
    [18]
    Zeng C Z, Lin H Y, Liu Z X, et al. Analysis of young shoots of ‘Anji Baicha’ (Camellia sinensis) at three developmental stages using nontargeted LC-MS-based metabolomics[J]. Journal of Food Science,2019,84(7):1746−1757. doi: 10.1111/1750-3841.14657
    [19]
    Lee J F, Lee B J, Chung J O, et al. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography[J]. Food Chemistry,2015,174:452−459. doi: 10.1016/j.foodchem.2014.11.086
    [20]
    Carloni P, Tiano L, Padella L, et al. Antioxidant activity of white, green and black tea obtained from the same tea cultivar[J]. Food Research International,2013,53:900−908. doi: 10.1016/j.foodres.2012.07.057
    [21]
    陶湘辉, 陈常颂, 林郑和, 等. 茶叶EGCG在不同茶类加工过程的变化初探[J]. 茶叶科学技术,2010,26(3):27−30.
    [22]
    王丽, 叶乃兴, 郑德勇, 等. 加工工艺对白茶、乌龙茶、红茶生化成分及抗氧化活性的影响[J]. 福建茶叶,2016,38(4):4−7. doi: 10.3969/j.issn.1005-2291.2016.04.003
    [23]
    李朋亮. 基于修饰代谢组学的绿茶中糖苷类品质成分研究[D]. 武汉: 华中农业大学, 2018.
    [24]
    Fraser K, Lane G A, Otter D E, et al. Non-targeted analysis by LC-MS of major metabolite changes during the oolong tea manufacturing in New Zealand[J]. Food Chemistry,2014,151:394−403. doi: 10.1016/j.foodchem.2013.11.054
    [25]
    Li X, Liu G J, Zhang W, et al. Novel flavoalkaloids from white tea with inhibitory activity against the formation of advanced glycation end products[J]. Journal of Agricultural and Food Chemistry,2018,66:4621−4629. doi: 10.1021/acs.jafc.8b00650
    [26]
    尹军峰, 闵航, 许勇泉, 等. 摊放环境对名优绿茶鲜叶茶多酚及儿茶素组成的影响[J]. 茶叶科学,2008,28(1):22−27.
  • Cited by

    Periodical cited type(25)

    1. 陈晨,史国华,陈勃旭,张瑞,王玉欣,贾文珅,陈佳,周巍. 基于Real-time PCR法检测乳粉中牛源性成分定量研究. 粮油食品科技. 2024(02): 159-164 .
    2. 孙颖,赵宇曦,孟金凤,何洪优,刘斌. 基于文献计量的羊乳研究进展. 中国乳品工业. 2024(05): 42-50 .
    3. 朱小朋,朱丽,付尚辰,刘永峰. 低乳糖牛乳粉品质分析及蛋白特性研究. 食品与发酵工业. 2024(13): 157-165 .
    4. 魏丽婧,宋彦秀,苏葳艺,钱坤,杨慧杰. 牛乳、羊乳营养价值及发展现状. 品牌与标准化. 2024(05): 161-163 .
    5. 任秀杰. 日粮添加发酵高粱对奶牛生长性能、泌乳性能及经济效益的影响. 中国饲料. 2024(16): 73-76 .
    6. 安小鹏,刘楠,胡郑佳楣,胡劲草,徐小龙,张磊,宋宇轩. 东佛里生羊、湖羊及东湖杂交羊的泌乳性能比较分析. 中国畜牧兽医. 2023(01): 238-245 .
    7. 杨国武,张娟香,路建卫,赵雪,扎老,梁春年. 美仁牦牛乳品质特性分析. 中国草食动物科学. 2023(02): 28-32 .
    8. 朱俊儒,韦唯,裴党帅,张芬鹊,段瑜,郭永峰,江悦,夏树立,韩静,侯金星,安小鹏. PDCD4对奶山羊乳腺上皮细胞的凋亡及β-酪蛋白和TG合成的影响. 畜牧兽医学报. 2023(04): 1429-1440 .
    9. 张莉莉,崔占鸿,孙璐,刘书杰. 高通量测序技术分析青海藏羊初乳和常乳微生物多样性. 中国畜牧杂志. 2023(05): 129-135 .
    10. 邵钺馨,张新钰,葛丽岩,史怀平. 西农萨能奶山羊ATF4基因克隆及其功能初步研究. 畜牧兽医学报. 2023(06): 2353-2364 .
    11. 时玉强. 大豆和牛奶在国民膳食结构优化方面的分析与展望. 安徽农学通报. 2023(10): 118-123 .
    12. 鲁曦,任珂. 山羊乳及绵羊乳外泌体miRNAs表达谱的分析与差异比较. 食品与发酵工业. 2023(23): 134-140 .
    13. 杨小剑,高俊伟,康海龙,赵三军,高安平,黄润. 利乐梦幻盖类产品在生产过程中充氮工艺优化的研究. 食品安全导刊. 2023(35): 141-146+152 .
    14. 乌日汉,张立果,郑重,刘信,李光鹏,苏小虎,张立. 戴瑞羊、小尾寒羊及其杂交后代乳成分比较分析. 食品工业科技. 2022(03): 240-245 . 本站查看
    15. 杨惠茹,郭军,古斯愣图,王越男,张春华,孙海洲. 六种家畜乳氨基酸特征聚类分析. 食品与发酵工业. 2022(06): 233-240 .
    16. 代安娜,杨具田,丁波,刘红娜. 牦牛乳组分及功能特性研究进展. 动物营养学报. 2022(06): 3443-3453 .
    17. 汤海霞,张艳,葛武鹏,宋宇轩,王海燕,王爽爽. 酶解法制备绵羊乳酪蛋白ACE抑制肽的工艺优化及其抑制机制. 中国食品学报. 2022(06): 220-231 .
    18. 张永金,胡艳红,葛武鹏,丁一,何锐,袁亚娟,冶秀云,邱亮. 母乳、牛乳与主要小品种乳蛋白质组成及乳清蛋白二级结构比较. 食品安全质量检测学报. 2022(15): 4779-4786 .
    19. 吴双虎,侯金星,江悦,朱俊儒,韦唯,刘淑娟,夏树立,韩静,安小鹏. RNA干扰SLC4A8对奶山羊乳腺上皮细胞增殖和泌乳的影响. 家畜生态学报. 2022(08): 20-25 .
    20. 李敏,刘爱成,朱晴,陈馨萍,刘微,梁肖娜,郑艳,岳喜庆. 酶解对脱脂牛乳蛋白抗原性及感官特性的影响. 乳业科学与技术. 2022(04): 14-21 .
    21. 贾佳,郭军,李琪,郭珍琪. 液态乳及乳粉脂肪酸指纹工业特征分析. 中国食品学报. 2022(09): 226-238 .
    22. 明亮,那琴,吴晓云,吉日木图. 热处理对驼乳、牛乳和山羊乳中氨基酸组成与含量的影响. 食品与发酵工业. 2022(21): 97-103 .
    23. 陈树娣,谢景千,蒋明峰,黎永乐. 基于液相色谱-串联质谱技术的羊牛乳特征肽段鉴别及测定. 食品安全质量检测学报. 2021(15): 5948-5953 .
    24. 杨彩虹,田星哲,田沛知,李金辉,严慧,段春辉,张英杰,纪守坤,刘月琴. 绵羊常乳成分的Meta分析. 动物营养学报. 2021(10): 5861-5873 .
    25. 刘朋龙,陆东林. 不同家畜乳产能营养素含量及产能比例分析. 中国乳业. 2020(12): 64-67 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (355) PDF downloads (51) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return