Citation: | WANG Chunbo, LYU Hui, WEI Lingdong, et al. Analysis on Secondary Metabolites Difference of Guiding Yunwu Tea between Native and Introduced Varieties[J]. Science and Technology of Food Industry, 2021, 42(14): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110282a. |
[1] |
Guo X, Long P, Meng Q, et al. An emerging strategy for evaluating the grades of Keemun black tea by combinatory liquid chromatography-Orbitrap mass spectrometry-based untargeted metabolomics and inhibition effects on alpha-glucosidase and alpha-amylase[J]. Food Chemistry,2018,246:74−81. doi: 10.1016/j.foodchem.2017.10.148
|
[2] |
王叶. 不同生境茶叶产量与品质形成的光合生理生态机制[D]. 长沙: 湖南农业大学, 2018.
|
[3] |
赖全康. 气候变化对茶叶生长及品质的影响分析[J]. 南方农业,2019,13(9):155−156.
|
[4] |
Ji H G, Lee Y R, Lee M S, et al. Metabolic phenotyping of various tea (Camellia sinensis L.) cultivars and understanding of their intrinsic metabolism[J]. Food Chemistry,2017,233(3):321−330.
|
[5] |
Dai W D, Xie D C, Lu M L, et al. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach[J]. Food Research International,2017,96:40−45. doi: 10.1016/j.foodres.2017.03.028
|
[6] |
许国旺. 代谢组学-方法和应用[M]. 北京: 科学出版社, 2008: 6.
|
[7] |
Wei D, Qi D D, Yang T, et al. Non-targeted analysis using ultra performance liquid chromatography-quadruple time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.)[J]. Journal of Agricultural and Food Chemistry,2015,63:9869−9878. doi: 10.1021/acs.jafc.5b03967
|
[8] |
Hyung W R, Heung J Y, Ju H A, et al. Comparison of secondary metabolite changes in Camellia sinensis leaves depending on the growth stage[J]. Food Control,2017,73(8):916−921.
|
[9] |
Guillarme D, Casetta C, Bicchi C, et al. High throughput qualitative analysis of polyphenols in tea samples by ultra-high pressure liquid chromatography coupled to UV and mass spectrometry detectors[J]. Journal of Chromatography A,2010,1217(44):6882−6890. doi: 10.1016/j.chroma.2010.08.060
|
[10] |
王莹, 李岩, 王姝, 等. 低温胁迫下贵州云雾贡茶生长调节剂的变化[J]. 湖北农业科学,2020,59(8):99−102.
|
[11] |
肖正广. 贵定云雾贡茶的发展历史和文化渊源[J]. 茶叶,2018,44(4):206−208. doi: 10.3969/j.issn.0577-8921.2018.04.009
|
[12] |
Dai W, Yin P, Chen P, et al. Study of urinary steroid hormone disorders: Difference between hepatocellular carcinoma in early stage and cirrhosis[J]. Analytical and Bioanalytical Chemistry,2014,406:4325−4335. doi: 10.1007/s00216-014-7843-3
|
[13] |
Dai W D, Wei C, Kong H W, et al. Effect of the traditional Chinese medicine tongxinluo on endothelial dysfunction rats studied by using urinary metabonomics based on liquid chromatography-mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2011,56:86−92. doi: 10.1016/j.jpba.2011.04.020
|
[14] |
Xia J, Sinelnikov I V, Han B, et al. MetaboAnalyst 3.0-making metabolomics more meaningful[J]. Nucleic Acids Research,2015,43:W251−W257. doi: 10.1093/nar/gkv380
|
[15] |
李鑫磊, 俞晓敏, 林军, 等. 基于非靶向代谢组学的白茶与绿茶、乌龙茶和红茶代谢产物特征比较[J]. 食品科学,2020,41(12):197−203. doi: 10.7506/spkx1002-6630-20190128-358
|
[16] |
Gai Z G, Wang Y, Jang J, et al. The quality evaluation of tea (Camellia sinensis) varieties based on the metabolomics[J]. Hortscience,2019,54:409−415. doi: 10.21273/HORTSCI13713-18
|
[17] |
Li J, Wang J Q, Yao Y F, et al. Phytochemical comparison of different tea (Camellia sinensis) cultivars and its association with sensory quality of finished tea[J]. LWT-Food Science and Technology,2020,117:108595. doi: 10.1016/j.lwt.2019.108595
|
[18] |
Zeng C Z, Lin H Y, Liu Z X, et al. Analysis of young shoots of ‘Anji Baicha’ (Camellia sinensis) at three developmental stages using nontargeted LC-MS-based metabolomics[J]. Journal of Food Science,2019,84(7):1746−1757. doi: 10.1111/1750-3841.14657
|
[19] |
Lee J F, Lee B J, Chung J O, et al. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography[J]. Food Chemistry,2015,174:452−459. doi: 10.1016/j.foodchem.2014.11.086
|
[20] |
Carloni P, Tiano L, Padella L, et al. Antioxidant activity of white, green and black tea obtained from the same tea cultivar[J]. Food Research International,2013,53:900−908. doi: 10.1016/j.foodres.2012.07.057
|
[21] |
陶湘辉, 陈常颂, 林郑和, 等. 茶叶EGCG在不同茶类加工过程的变化初探[J]. 茶叶科学技术,2010,26(3):27−30.
|
[22] |
王丽, 叶乃兴, 郑德勇, 等. 加工工艺对白茶、乌龙茶、红茶生化成分及抗氧化活性的影响[J]. 福建茶叶,2016,38(4):4−7. doi: 10.3969/j.issn.1005-2291.2016.04.003
|
[23] |
李朋亮. 基于修饰代谢组学的绿茶中糖苷类品质成分研究[D]. 武汉: 华中农业大学, 2018.
|
[24] |
Fraser K, Lane G A, Otter D E, et al. Non-targeted analysis by LC-MS of major metabolite changes during the oolong tea manufacturing in New Zealand[J]. Food Chemistry,2014,151:394−403. doi: 10.1016/j.foodchem.2013.11.054
|
[25] |
Li X, Liu G J, Zhang W, et al. Novel flavoalkaloids from white tea with inhibitory activity against the formation of advanced glycation end products[J]. Journal of Agricultural and Food Chemistry,2018,66:4621−4629. doi: 10.1021/acs.jafc.8b00650
|
[26] |
尹军峰, 闵航, 许勇泉, 等. 摊放环境对名优绿茶鲜叶茶多酚及儿茶素组成的影响[J]. 茶叶科学,2008,28(1):22−27.
|
1. |
陈晨,史国华,陈勃旭,张瑞,王玉欣,贾文珅,陈佳,周巍. 基于Real-time PCR法检测乳粉中牛源性成分定量研究. 粮油食品科技. 2024(02): 159-164 .
![]() | |
2. |
孙颖,赵宇曦,孟金凤,何洪优,刘斌. 基于文献计量的羊乳研究进展. 中国乳品工业. 2024(05): 42-50 .
![]() | |
3. |
朱小朋,朱丽,付尚辰,刘永峰. 低乳糖牛乳粉品质分析及蛋白特性研究. 食品与发酵工业. 2024(13): 157-165 .
![]() | |
4. |
魏丽婧,宋彦秀,苏葳艺,钱坤,杨慧杰. 牛乳、羊乳营养价值及发展现状. 品牌与标准化. 2024(05): 161-163 .
![]() | |
5. |
任秀杰. 日粮添加发酵高粱对奶牛生长性能、泌乳性能及经济效益的影响. 中国饲料. 2024(16): 73-76 .
![]() | |
6. |
安小鹏,刘楠,胡郑佳楣,胡劲草,徐小龙,张磊,宋宇轩. 东佛里生羊、湖羊及东湖杂交羊的泌乳性能比较分析. 中国畜牧兽医. 2023(01): 238-245 .
![]() | |
7. |
杨国武,张娟香,路建卫,赵雪,扎老,梁春年. 美仁牦牛乳品质特性分析. 中国草食动物科学. 2023(02): 28-32 .
![]() | |
8. |
朱俊儒,韦唯,裴党帅,张芬鹊,段瑜,郭永峰,江悦,夏树立,韩静,侯金星,安小鹏. PDCD4对奶山羊乳腺上皮细胞的凋亡及β-酪蛋白和TG合成的影响. 畜牧兽医学报. 2023(04): 1429-1440 .
![]() | |
9. |
张莉莉,崔占鸿,孙璐,刘书杰. 高通量测序技术分析青海藏羊初乳和常乳微生物多样性. 中国畜牧杂志. 2023(05): 129-135 .
![]() | |
10. |
邵钺馨,张新钰,葛丽岩,史怀平. 西农萨能奶山羊ATF4基因克隆及其功能初步研究. 畜牧兽医学报. 2023(06): 2353-2364 .
![]() | |
11. |
时玉强. 大豆和牛奶在国民膳食结构优化方面的分析与展望. 安徽农学通报. 2023(10): 118-123 .
![]() | |
12. |
鲁曦,任珂. 山羊乳及绵羊乳外泌体miRNAs表达谱的分析与差异比较. 食品与发酵工业. 2023(23): 134-140 .
![]() | |
13. |
杨小剑,高俊伟,康海龙,赵三军,高安平,黄润. 利乐梦幻盖类产品在生产过程中充氮工艺优化的研究. 食品安全导刊. 2023(35): 141-146+152 .
![]() | |
14. |
乌日汉,张立果,郑重,刘信,李光鹏,苏小虎,张立. 戴瑞羊、小尾寒羊及其杂交后代乳成分比较分析. 食品工业科技. 2022(03): 240-245 .
![]() | |
15. |
杨惠茹,郭军,古斯愣图,王越男,张春华,孙海洲. 六种家畜乳氨基酸特征聚类分析. 食品与发酵工业. 2022(06): 233-240 .
![]() | |
16. |
代安娜,杨具田,丁波,刘红娜. 牦牛乳组分及功能特性研究进展. 动物营养学报. 2022(06): 3443-3453 .
![]() | |
17. |
汤海霞,张艳,葛武鹏,宋宇轩,王海燕,王爽爽. 酶解法制备绵羊乳酪蛋白ACE抑制肽的工艺优化及其抑制机制. 中国食品学报. 2022(06): 220-231 .
![]() | |
18. |
张永金,胡艳红,葛武鹏,丁一,何锐,袁亚娟,冶秀云,邱亮. 母乳、牛乳与主要小品种乳蛋白质组成及乳清蛋白二级结构比较. 食品安全质量检测学报. 2022(15): 4779-4786 .
![]() | |
19. |
吴双虎,侯金星,江悦,朱俊儒,韦唯,刘淑娟,夏树立,韩静,安小鹏. RNA干扰SLC4A8对奶山羊乳腺上皮细胞增殖和泌乳的影响. 家畜生态学报. 2022(08): 20-25 .
![]() | |
20. |
李敏,刘爱成,朱晴,陈馨萍,刘微,梁肖娜,郑艳,岳喜庆. 酶解对脱脂牛乳蛋白抗原性及感官特性的影响. 乳业科学与技术. 2022(04): 14-21 .
![]() | |
21. |
贾佳,郭军,李琪,郭珍琪. 液态乳及乳粉脂肪酸指纹工业特征分析. 中国食品学报. 2022(09): 226-238 .
![]() | |
22. |
明亮,那琴,吴晓云,吉日木图. 热处理对驼乳、牛乳和山羊乳中氨基酸组成与含量的影响. 食品与发酵工业. 2022(21): 97-103 .
![]() | |
23. |
陈树娣,谢景千,蒋明峰,黎永乐. 基于液相色谱-串联质谱技术的羊牛乳特征肽段鉴别及测定. 食品安全质量检测学报. 2021(15): 5948-5953 .
![]() | |
24. |
杨彩虹,田星哲,田沛知,李金辉,严慧,段春辉,张英杰,纪守坤,刘月琴. 绵羊常乳成分的Meta分析. 动物营养学报. 2021(10): 5861-5873 .
![]() | |
25. |
刘朋龙,陆东林. 不同家畜乳产能营养素含量及产能比例分析. 中国乳业. 2020(12): 64-67 .
![]() |