JIN Xiaochun, AN Qi, WANG Xinya, et al. Release Characteristics of Curcumin Loaded on Zein/Poly (Ethylene Oxide) by Coaxial Electrospinning[J]. Science and Technology of Food Industry, 2021, 42(14): 61−69. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110056.
Citation: JIN Xiaochun, AN Qi, WANG Xinya, et al. Release Characteristics of Curcumin Loaded on Zein/Poly (Ethylene Oxide) by Coaxial Electrospinning[J]. Science and Technology of Food Industry, 2021, 42(14): 61−69. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110056.

Release Characteristics of Curcumin Loaded on Zein/Poly (Ethylene Oxide) by Coaxial Electrospinning

More Information
  • Received Date: November 05, 2020
  • Available Online: May 26, 2021
  • As a by-product of starch production, zein is widely used in feed and has a low utilization rate. In this experiment, electrospinning technology was used to obtain nanofiber membranes by high-value use of zein, which was used for antibacterial research. The zein nanofibers with core/shell supported curcumin were developed by coaxial electrospinning. Curcumin was supported in three core/shell nanofibers made up of zein and polyethylene oxide (PEO), and characterized by transmission electron microscopy (TEM), UV, FT-IR and XRD. The results of cyclic voltammetry (CV) release kinetics showed that the encapsulation efficiency of curcumin reached 96.02%, 95.00% and 90.15% on the basis of loading capacity of 0.226, 0.260 and 0.264 mg, which was consistent with the affinity of curcumin to zein slightly stronger than that of PEO. By studying the electrochemical properties of curcumin, it was found that zein coated polyethylene oxide film had the best sustained-release effect; By SEM, it could be observed that after the release of curcumin, the fiber membrane appeared holes and the structure was destroyed. Antimicrobial studies showed that Staphylococcus aureus was more sensitive to curcumin than E. coli. The curcumin loaded nanofibers prepared by coaxial electrospinning could be used for the preservation and storage of functional food and biomedical products.
  • [1]
    Gutierrez-Gonzalez Javier, Garcia-Cela Esther, Magan Naresh, et al. Electrospinning alginate/polyethylene oxide and curcumin composite nanofibers[J]. Materials Letters,2020,270:127662. doi: 10.1016/j.matlet.2020.127662
    [2]
    Rafiee Z, Nejatian M, Daeihamed M, et al. Application of different nanocarriers for encapsulation of curcumin[J]. Crit Rev Food Sci Nutr,2019,59(21):3468−3497. doi: 10.1080/10408398.2018.1495174
    [3]
    Shaikh J, Ankola D D, Beniwal V, et al. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer[J]. Eur J Pharm Sci,2009,37(3-4):223−230. doi: 10.1016/j.ejps.2009.02.019
    [4]
    Anand Preetha, Kunnumakkara Ajaikumar B, Newman Robert A, et al. Bioavailability of curcumin: Problems and promises[J]. Molecular Pharmaceutics,2007,4(6):807−818. doi: 10.1021/mp700113r
    [5]
    Llorens E, Ibanez H, Del Valle L J, et al. Biocompatibility and drug release behavior of scaffolds prepared by coaxial electrospinning of poly(butylene succinate) and polyethylene glycol[J]. Mater Sci Eng C Mater Biol Appl,2015,49:472−484. doi: 10.1016/j.msec.2015.01.039
    [6]
    Rostami MohammadReza, Yousefi Mohammad, Khezerlou Arezou, et al. Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes[J]. Food Hydrocolloids,2019,97:105170. doi: 10.1016/j.foodhyd.2019.06.015
    [7]
    Shi Ce, Xi Shixia, Han Yingchun, et al. Structure, rheology and electrospinning of zein and poly(ethylene oxide) in aqueous ethanol solutions[J]. Chinese Chemical Letters,2019,30(2):305−310. doi: 10.1016/j.cclet.2018.07.010
    [8]
    史册, 李云琦. 小角X光散射在蛋白质及其复合物领域的研究进展[J]. 高分子学报,2015(8):871−883. doi: 10.11777/j.issn1000-3304.2015.15048
    [9]
    Zhang H, Xi S, Han Y, et al. Determining electrospun morphology from the properties of protein-polymer solutions[J]. Soft Matter,2018,14(18):3455−3462. doi: 10.1039/C7SM02203D
    [10]
    Kayaci F, Uyar T. Electrospun zein nanofibers incorporating cyclodextrins[J]. Carbohydr Polym,2012,90(1):558−568. doi: 10.1016/j.carbpol.2012.05.078
    [11]
    Bui Hieu Trung, Chung Ok Hee, Park Jun Seo. Fabrication of electrospun antibacterial curcumin-loaded zein nanofibers[J]. Polymer Korea,2014,38(6):744−751. doi: 10.7317/pk.2014.38.6.744
    [12]
    Aguiar J, Estevinho B N, Santos L. Microencapsulation of natural antioxidants for food application-the specific case of coffee antioxidants-a review[J]. Trends in Food Science & Technology,2016,58:21−39.
    [13]
    Xue J, Xie J, Liu W, et al. Electrospun nanofibers: New concepts, materials, and applications[J]. Acc Chem Res,2017,50(8):1976−1987. doi: 10.1021/acs.accounts.7b00218
    [14]
    Alehosseini Ali, Gomez-Mascaraque Laura G, Martinez-Sanz Marta, et al. Electrospun curcumin-loaded protein nanofiber mats as active/bioactive coatings for food packaging applications[J]. Food Hydrocolloids,2019,87:758−771. doi: 10.1016/j.foodhyd.2018.08.056
    [15]
    Zhu Miaomiao, Han Jingquan, Wang Fang, et al. Electrospun nanofibers membranes for effective air filtration[J]. Macromolecular Materials and Engineering,2017,302(1):1600353. doi: 10.1002/mame.201600353
    [16]
    Yoon J, Yang H S, Lee B S, et al. Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications[J]. Adv Mater,2018,30(42):e1704765. doi: 10.1002/adma.201704765
    [17]
    Huang Baoyu, Zhang Zhenxing, Zhao Changhui, et al. Enhanced gas-sensing performance of ZnO@In2O3 core@shell nanofibers prepared by coaxial electrospinning[J]. Sensors and Actuators B: Chemical,2018,255:2248−2257. doi: 10.1016/j.snb.2017.09.022
    [18]
    张浩, 黄洪亮, 董怡麟, 等. 同轴静电纺丝玉米醇溶蛋白和聚环氧乙烷不同核壳纤维的性能[J]. 高分子材料科学与工程,2019(11):116−122.
    [19]
    Ping Lan, Pizzi Antonio, Guo Zhou Ding, et al. Condensed tannins from grape pomace: Characterization by FTIR and MALDI TOF and production of environment friendly wood adhesive[J]. Industrial Crops and Products,2012,40:13−20. doi: 10.1016/j.indcrop.2012.02.039
    [20]
    Sun X Z, Williams G R, Hou X X, et al. Electrospun curcumin-loaded fibers with potential biomedical applications[J]. Carbohydr Polym,2013,94(1):147−153. doi: 10.1016/j.carbpol.2012.12.064
    [21]
    Yao Chen, Li Xinsong, Song Tangying, et al. Biodegradable nanofibrous membrane of zein/silk fibroin by electrospinning[J]. Polymer International,2009,58(4):396−402. doi: 10.1002/pi.2544
    [22]
    Wang H, Hao L, Niu B, et al. Kinetics and antioxidant capacity of proanthocyanidins encapsulated in zein electrospun fibers by cyclic voltammetry[J]. J Agric Food Chem,2016,64(15):3083−3090. doi: 10.1021/acs.jafc.6b00540
    [23]
    Moomand Khalid, Lim Loong-Tak. Oxidative stability of encapsulated fish oil in electrospun zein fibres[J]. Food Research International,2014,62:523−532. doi: 10.1016/j.foodres.2014.03.054
    [24]
    Masek Anna, Chrzescijanska Ewa, Zaborski Marian. Characteristics of curcumin using cyclic voltammetry, UV-Vis, fluorescence and thermogravimetric analysis[J]. Electrochimica Acta,2013,107:441−447. doi: 10.1016/j.electacta.2013.06.037
    [25]
    Bouman J, Belton P, Venema P, et al. Controlled release from zein matrices: Interplay of drug hydrophobicity and pH[J]. Pharm Res,2016,33(3):673−685. doi: 10.1007/s11095-015-1818-8
    [26]
    Corradini E, Curti P S, Meniqueti A B, et al. Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials[J]. Int J Mol Sci,2014,15(12):22438−22470. doi: 10.3390/ijms151222438
    [27]
    Bound D J, Murthy P S, Srinivas P. Synthesis and antibacterial properties of 2, 3-dideoxyglucosides of terpene alcohols and phenols[J]. Food Chem,2015,185:192−199. doi: 10.1016/j.foodchem.2015.03.078
    [28]
    Cai Ruizhi, Wang Hualin, Cao Mengye, et al. Synthesis and antimicrobial activity of mesoporous hydroxylapatite/zinc oxide nanofibers[J]. Materials & Design,2015,87:17−24.
    [29]
    Bhawana, Basniwal R K, Buttar H S, et al. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study[J]. J Agric Food Chem,2011,59(5):2056−2061. doi: 10.1021/jf104402t
    [30]
    Lou Z, Wang H, Zhu S, et al. Antibacterial activity and mechanism of action of chlorogenic acid[J]. J Food Sci,2011,76(6):M398−403. doi: 10.1111/j.1750-3841.2011.02213.x
  • Cited by

    Periodical cited type(13)

    1. 孙永进,曾惠梅,黄静,赵云龙,蔡锦源,孙松. 吴茱萸多糖的分离纯化、结构表征及体外降脂活性. 食品工业科技. 2025(08): 33-42 . 本站查看
    2. 王磊,李国龙,唐志书,宋忠兴,袁书会,刘红波,史鑫波,陈佳昕. 不同生长时期酸枣果肉多糖相对分子质量分布和单糖组成及抗氧化活性研究. 食品工业科技. 2024(07): 1-7 . 本站查看
    3. 夏谍,李铭,丁俞珍,邓萌玥,位盼盼,晏子俊,张磊,陈彤. 不同脱色方法对三七多糖物理性质及体外抗氧化活性的影响. 化学研究与应用. 2024(03): 509-521 .
    4. 李瑶,熊彩明,张佳乐,冯学珍,冯书珍. 磷酸化裙带菜多糖的制备及结构表征和生物活性分析. 食品科学. 2024(07): 35-42 .
    5. 郭雅娟,范军刚,李建珍. 不同干燥方式对骏枣中香气成分的影响. 中国调味品. 2024(04): 173-177 .
    6. 刘春阳,白金波,杨尚青,史进阳,秦亚敏,吴德玲,解松子. 枳椇子多糖的酸提取工艺优化及其理化性质与抗氧化活性研究. 食品与发酵工业. 2024(09): 148-156 .
    7. 魏炳琦,高小雨,刘延鑫,王义翠. 红枣多糖的结构、生物学活性及产品开发进展. 食品工业科技. 2024(12): 1-9 . 本站查看
    8. 董小强,文畅,许金丹,史乐雪,胡玉龙,李杰明,董春红,丁侃. 鼠李科植物枣多糖的活性机制及其结构特征研究进展. 中国药科大学学报. 2024(04): 443-453 .
    9. 吴喆,朱佳敏,刘军,符小玉,娄磊,涂亦娴,秦新政,艾合买提江·艾海提. 红枣主要活性成分及其功能活性研究进展. 现代食品科技. 2024(09): 359-369 .
    10. 张雅施,李文文,宗爱珍,左兆河,郑振佳,张斌. 菊芋多糖锌的制备及其抗氧化活性评价. 食品工业科技. 2023(12): 251-259 . 本站查看
    11. 刘迎欣,伊娟娟,邵怡雯,崔燕,李雪,王金柱,郝利民,鲁吉珂. 布拉氏酵母发酵山药多糖的分离鉴定与体外生物活性探究. 食品工业科技. 2023(14): 154-162 . 本站查看
    12. 石训,石勇,孙晓瑞. 基于文献计量的枣多糖研究趋势分析. 现代食品. 2023(21): 55-58 .
    13. 代琪,白苑丁,叶俏波,杨小艳,赵小勤,王欣. 不同产地大枣化学成分及其药理作用研究进展. 中国药物评价. 2023(06): 506-511 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (251) PDF downloads (26) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return